assgts

D2.1.3 INGESTION SERVICES - 2ND
RELEASE

Advanced Search Services and Enhanced
Technological Solutions for the European Digital
Library

Grant Agreement Number: 250527

Funding schema: Best Practice Network

Deliverable D2.1.3 WP2.1

Prototype
V.1.3 —March 31 2012
Document. ref.: ASSETS.D2.1.3.CNR.WP2.1.V1.3

©080

assgts

Programme Name:cccceeeees ICT PSP

Project Number:cccceee 250527

Project Title:cccovvveeeiieeee. ASSETS

Partners:ccoceeeeveeecrveecveeeveeenns Coordinator: ENG (IT)
Contractors:

Document Number: D2.1.3

Work-Package:...........cccceeevenveeennns WP2.1

Deliverable Type:ccccccceeeieenns Prototype

Contractual Date of Delivery: 31-January-2012

Actual Date of Delivery: 31-March-2012

Title of Document: Ingestion Services — 2" release

Author(s):ccooeeieiniiiieeee, Andrea Esuli (CNR)

... Giacomo Berardi (CNR)
... Diego Marcheggiani (CNR)
... Fabrizio Sebastiani (CNR)
... Sergiu Gordea (AIT)
... Oscar Tackstrom (SICS)

Approval of this report APPROVED — Luigi Briguglio (ENG)
Summary of this report.:................ see Executive Summary
History: ..o, see Change History
Keyword List:ccccccevvviieennnnnnn. ASSETS, Ingestion, Classification, Extraction,
Metadata
Availability.............cocoiiiiiin This report is:
X public
Change History
Version |Date Status Author Description
(Partner)
0.1 03/01/2012 | Draft AE (CNR) Initial draft, by integrating

wiki and dev. environment

0.5 08/03/2012 | Draft AE (CNR) Release for internal review
0.6 12/03/2012 |Review |SG (AIT) Added the last information
Ready about packaging and

configuration

1.0 23/03/2012 | Pre Final | AE (CNR) Feedback from reviewers

1.1 29/03/2012 | Pre Final |SG (AIT) Check and revision from
Technical Director

1.2 30/03/2012 | Final AE(CNR) Final version

1.3 31/03/2012 |Final LB (ENG) APPROVAL AND RELEASE

LM:ASSETS Ingestion Services — 2nd release D2.1.3V1.3

contributions from ASSETS

assgts

Table of Contents

1. INTRODUCTION 2
2. SCIENTIFIC BACKGROUND 4
2.1 KNOWLEDGE EXTRACTION FROM METADATA RECORDS 4
2.1.1 A formal definition of information extraction 5
2.1.2 Conditional random fields 6
2.1.3 References 7
2.2 AUTOMATIC CLASSIFICATION OF METADATA RECORDS 8
2.2.1 TreeBoost.MH: A hierarchical version of AdaBoost.MH for multi-label TC 9
2.2.2 Related work 12
2.2.3 References 12
3. SOFTWARE REQUIREMENTS OVERVIEW 14
3.1 KNOWLEDGE EXTRACTION 14
3.1.1 Problem statement 14
3.1.2 Product position statement 14
3.1.3 Stakeholder Descriptions 14
3.1.4 User Environment 15
3.1.5 Feature or Functionality Overview 15
3.1.6 System Qualities 15
3.1.7 System Constraints 16
3.1.8 System Compliance 16
3.1.9 System Documentation 16
3.2 METADATA CLASSIFICATION SERVICE 16
3.2.1 Problem Statement 17
3.2.2 Product Position Statement 17
3.2.3 Stakeholder Descriptions 17
3.2.4 User Environment 18
3.2.5 Feature or Functionality Overview 18
3.2.6 System Qualities 18
3.2.7 System Constraints 19
3.2.8 System Compliance 19
3.2.9 System Documentation 19
3.3 INGESTION WORKFLOW SERVICE 20
3.3.1 Problem statement 20
3.3.2 Functionality overview 21
3.3.3 System Qualities 22
4., TECHNICAL DOCUMENTATION: 23
4.1 UML DIAGRAMS 23
4.1.1 Knowledge extraction service 23
4.1.2 Metadata classification service 27
4.1.3 Ingestion workflow management 31
4.2 SERVICE APIs 33
4.2.1 Knowledge extraction service 33
4.2.2 Metadata classification service 38
4.2.3 Ingestion workflow management service 41
BHEE
‘@MASSETS Ingestion Services — 2nd release D2.1.3V13

assgts

4.3 SOFTWARE PACKAGING
4.4 INSTALLATION AND CONFIGURATION

5. USER MANUAL

5.1 KNOWLEDGE EXTRACTION SERVICE
5.1.1 Training set definition guidelines
5.1.2 Training data format
5.1.3 Stand-alone test user interface
5.2 METADATA CLASSIFICATION SERVICE
5.2.1 Training set definition guidelines
5.2.2 Training data format
5.2.3 Stand-alone test user interface
5.3 INGESTION WORKFLOW GUI
5.3.1 Enrichment model learning panel
5.3.2 Test enrichment panel
5.3.3 Knowledge extraction screen
5.3.4 Metadata classification screen

6. EVALUATION OF THE SERVICES

6.1 KNOWLEDGE EXTRACTION SERVICE
6.2 METADATA CLASSIFICATION SERVICE

7. CONCLUDING REMARKS

8. APPENDIXA

8.1 TRANING SET XSD SCHEMA FOR THE KNOWLEDGE EXTRACTION SERVICE
8.2 TRAINING SET XML EXAMPLE FOR THE KNOWLEDGE EXTRACTION SERVICE

9. APPENDIXB

9.1 TRANING SET XSD SCHEMA FOR THE METADATA CLASSIFICATION SERVICE
9.2 TRAINING SET XML EXAMPLE FOR THE METADATA CLASSIFICATION SERVICE

LM:ASSETS Ingestion Services — 2nd release

46
47

49

49
49
50
54
59
59
60
65
70
70
72
74
75

77

77
79

82

83

83
85

88

88
89

D2.1.3V1.3

assgts

Table of Figures

Figure 1 Aggregators in the Europeana organisation mode 20
Figure 2 The Europeana Ingestion Process 21
Figure 3 Flow of events for the training of the extraction service 24

Figure 4 Flow of the events for the enrichment process based on the extraction service 26
Figure 5 Flow of events for the training of the classification service 28

Figure 6 Flow of the events for the enrichment process based on the classification service 30

Figure 7 Activity diagram for ingestion workflow management 32
Figure 8 Knowledge Extraction Data Model 35
Figure 9 Knowledge Extraction REST API 36
Figure 10 Knowledge Extraction API 37
Figure 11 Metadata Classification Service API 39
Figure 12 Metadata Classification REST API 40
Figure 13 Assets Ingestion Panel API 45
Figure 14 Enrichment Service API 45
Figure 15 Test GUI for knowledge extraction 55
Figure 16 Selection of training file 56
Figure 17 Output of training process and selection of the trained model for enrichment of
metadata records 56
Figure 18 Selection of an XML file for enrichment 57
Figure 19 Enrichment of an XML file 58
Figure 20 Enrichment of a custom-made metadata record 59
Figure 21 Test GUI for metadata classification 66
Figure 22 Selection of training file 67
Figure 23 Output of training process and selection of the trained model for enrichment of
metadata records 67
Figure 24 Selection of an XML file for enrichment 68
Figure 25 Enrichment of an XML file 69
Figure 26 Enrichment of a custom-made metadata record 70
Figure 27 Enrichment model learning screen 71
Figure 28 Test enrichment screen — object selection 73
Figure 29 Test enrichment screen — enrichment result 74
Figure 30 Knowledge extraction screen — enrichment invocation 74
Figure 31 Knowledge extraction screen — enrichment results 75

LM:ASSETS Ingestion Services — 2nd release D2.1.3V13

assgts

Figure 32 Metadata classification screen

LM:ASSETS Ingestion Services — 2nd release

76

D2.1.3V1.3

assgts

Executive Summary

This document® contains the revised and final specification, technical documentation, and
user documentation for the services developed within tasks “T2.1.2 Knowledge extraction”,
“T2.1.3 Metadata classification”, both of which are under the responsibility of CNR, and task
“T2.1.4 Ingestion workflow management and Integration”, which is under the responsibility
of AIT.

The enrichment services are based on a supervised learning approach, i.e., a learning
algorithm is trained on examples of manually annotated records; the learning process
generates an enrichment model, which is then used to perform the automatic enrichment.
After providing a brief introduction on the Assets enrichment services (Section 1), the
scientific background on this process is presented (Section 2).

The enrichment modules are implemented as Web-Services being exposed for remote
invocation through their rest Interface. The ingestion workflow service connects to them
through their client interfaces and provides the users with a web interface to perform the
training and automatic enrichment of metadata collections. The software requirements and
the technical implementation details are reported in Sections 3 and 4, while Section 5
contains the user manual. Section 6 reports the experimental results aimed at determining
the quality of the automatic enrichment process and the guidelines used for the creation
training sets, as well.

1 Part of the content of this deliverable already appears in Deliverable 2.0.4 “The ASSET APIs” and in Deliverable 2.1.1 “Specification of
Ingestion Services' delivered at M12.

LM:ASSETS Ingestion Services — 2nd release Page 1 D2.1.3V13

assgts

1. Introduction

The objective of WP2.1 is to implement a set of services that provide automatic enrichment
of metadata records to the ASSETS platform.

The developed services allow ASSETS professional users to:

(i) automatically identify and annotate, within metadata records, pieces of text
that denote relevant entities (T2.1.2 “knowledge extraction from metadata
records”)

(ii) automatically classify the metadata records according to a set of categories,

possibly organized into a taxonomy, relevant for the domain (T2.1.3 “metadata
classification”).

The invocation of the services is integrated into the ingestion management tools developed
in collaboration with Europeana and “The European Library” (TEL). The mentioned tools will
support the back office processes in both these institutions (T2.1.4 “ingestion workflow
management”).

These tasks are made complex by the presence of different content providers, within the
ASSETS consortium and within Europeana, which have been concerned with different types
of content (i.e. text, image, audio, video) and different languages (i.e. there are 27
languages used in Europeana by now). There is a need thus to implement the above-
mentioned services in a way that addresses this diversity of content providers, content
types, and languages, and in a way that possibly allows new content providers, with new
content types described by metadata expressed in new languages, to be also addressed with
a minimum additional effort.

As a consequence, the services have been developed according to a supervised learning
methodology. Essentially, this means that a new content provider will be able to set up a
system for enriching its own metadata by providing to the system a “training” set of
enriched metadata records. The system would use these enriched metadata records as
indications, or examples, of what enriching metadata records from this content provider
means, and would then generate an “automatic enricher” of metadata records provided by
this content provider. This mechanism allows to set up automatic metadata enrichers for
any type of content provider, any type of content, and any language; of course, adequate
training sets of manually enriched metadata records must be given as input.

This supervised learning metaphor underlies all three services tackled within WP2.1.
However, its algorithmic realization for the considered services is different, since the
individual tasks are different in nature. For instance, T2.1.3 is a task that supports the
enrichment of metadata records as a whole by classifying them and will be tackled via
automatic text classification technologies. On the other hand, T2.1.2 is a task that supports
the enrichment of metadata records not by annotating the full record, but by annotating
individual sequences of words within the record. Therefore the knowledge extraction makes
use of automatic sequence learning (“information extraction”) technologies.

The integration of the enrichment service execution in a unified workflow (UIM) is achieved
web based technologies within the scope of T2.1.4. In this document, we will focus on the
description of both the GUI interface. The UIM, as the technical infrastructure used for

LM:ASSETS Ingestion Services — 2nd release Page 2 D2.1.3V13

assgts

workflow execution and plug-in orchestration have been described in the deliverable D2.1.1
SPECIFICATION OF INGESTION SERVICES.

The rest of the document contains a brief scientific background to the machine learning
method on which the services are based, the description of software requirements for the
services, their technical specification, the user manual which describes the format for
training data and how to use the test interface, and the evaluation of the quality of the
services, based on objective cross-validation experiments.

LM:ASSETS Ingestion Services — 2nd release Page 3 D2.1.3V13

assgts

2. Scientific background

This section gives background information about the machine learning methods adopted for
the implementation of the enrichment services.

2.1 Knowledge Extraction from Metadata Records

T.2.1.2 has to do with automatically annotating the text of which metadata records consist
of, by tagging specific parts of this text according to a pre-specified set of words that
denote concepts of interest in the domain the metadata records and the corresponding
context they refer to. This task is usually referred to as information extraction (IE) or
knowledge extraction in the literature [Ben-Dov and Feldman, 2010, McCallum 2005,
Sarawagi 2008]. In other words, the information extraction is the discipline concerned with
the extraction of natural language expressions from free text, where these expressions
instantiate concepts of interest in a given domain. If there are n different concepts of
interest, information extraction is a bit like highlighting the text via n highlight markers of n
different colours. For instance, given a corpus of job announcements, one might want to
extract from each announcement the natural language expressions that describe the nature
of the job, the promised annual salary, the job location, etc.

Another very popular instance of IE is searching free text for named entities, i.e., names (or
mentions) of persons, locations, geopolitical organizations, and so on [Nadeau and Sekine,
2007]. Put yet another way, IE may be seen as the activity of populating a structured
information repository (such as a relational database, where “job”, “annual salary”, “job
location” are attributes) from an unstructured information source such as a corpus of free
text. As such, IE is important for enriching digital libraries by making implicit semantics
explicit, and is a prerequisite for concept normalization (i.e., linking the mention of a
concept to an entry of a controlled vocabulary so that different linguistic manifestations of

the same concept link to the same controlled vocabulary entry).

There are two main approaches to designing an IE system. The former is the rule- based
approach, which consists of manually writing a set of rules which relate natural language
patterns with the concepts to be extracted from the text. This approach, while potentially
effective, is too costly, since it requires a lot of human effort for writing the rules, which
must be jointly written by a domain expert and a natural language engineer. In T2.1.2 we
followed the alternative approach, which is based on supervised machine learning.

According to this approach, a general-purpose learning software learns to relate natural
language patterns with the concepts to be instantiated, from a set of manually annotated
free texts, i.e., texts in which the instances of the concepts of interest have been marked by
a domain expert. The most important advantage of this approach is that the human effort
required for annotating the texts needed for training the system is less than the one
needed for manually writing the extraction rules. After all, this is just a manifestation of the
fact, well-known in the cognitive sciences, that defining a concept intensionally (i.e.,
specifying a set of rules for recognizing the instances of this concept — say, a set of rules for
recognizing red objects) is cognitively much harder for a human that defining the same
concept ostensively (i.e., pointing to a set of instances of the concept — say, pointing to a set
of red objects). A consequence of the machine learning approach is that a system for

LM:ASSETS Ingestion Services — 2nd release Page 4 D2.1.3V13

assgts

information extraction may be easily updated to reflect new needs. For example the
addition of a new concept into the group of concepts to be identified, or the replacement of
one concept set with a completely different one. While the rule-based approach would
require in these cases the manual update of the extraction rules via the joint work of a
knowledge engineer and a domain expert, the machine learning approach just requires the
provision of new training examples annotated according to the new concepts of interest.

In T2.1.2 this is extremely advantageous since the ASSETS consortium (and also the group of
Europeana content providers) comprises a variety of content providers coming from
libraries, museums, audio-visual archives, etc. They are owning different types of content
(and thus likely requiring the annotation of text according to different concepts of interest)
and describe it via metadata records formulated in different languages. In the rule-based
approach this diversity would entail the need to tackle each combination of <content
provider + type of content + language> individually, by manually writing rules for each such
combination, while in the machine learning approach each such combination may be tackled
by simply providing appropriate training examples.

In the following sections we will first give a formal definition of information extraction and a
brief description of “conditional random fields”, the supervised learning algorithm that we
have adopted for T2.1.2. Conditional random fields have widely been studied, and are
widely used in information extraction applications, ranging from named entity recognition
[Zeng et al., 2009], to the analysis of medical reports [Esuli et al., 2011], to medical record
anonymisation [Szarvas et al, 2007], and even word hyphenation [Trogkanis and Elkan,
2010]. We will then give a detailed description of the evaluation protocol that we have
followed in order to ascertain how accurately the system performs on the metadata records
of the ASSETS and Europeana content providers.

2.1.1 A formal definition of information extraction

Let a text U = {t; <s; <... <s,; < t,} consist of a sequence of tokens (i.e., word occurrences)
t;, ..., t, and separators (i.e., sequences of blanks and punctuation symbols) sy, ..., 5,.;, Wwhere
"<” means “precedes in the text”. We use the term textual unit (or simply t-unit), with
variables u;, u,, ..., to denote either a token or a separator. Let C={c;, ..., c,} be a predefined
set of tags (aka labels, or classes), or tagset. Let A={oys, ..., Ou, ..., Omy, ..., Omi} bE AN
annotation for U, where a segment o for U is a pair (st;et;) composed of a start token st; €
U and an end token et;; € U such that st; < et; (“<” obviously means “either precedes in the
text or coincides with”). Here, the intended semantics is that, given segment B;=(st;,et;) €
A, all t-units between st; and et;;, extremes included, are tagged with tag c.

Given a universe of texts Zf and a universe of segments 4, we define information

extraction (IE) as the task of estimating an unknown target function I : Zf X C» 3, that
defines how a text U € Zfought to be annotated (according to a tagset C) by an annotation

A € A. The result 0(0): Zg X €= 3 of this estimation is called a tagger. Consistently with

most mathematical literature we use the caret symbol [I() to indicate estimation. Note that
the notion of IE we have defined allows a given t-unit to be tagged by more than one tag,
and is thus dubbed multi-tag IE. The multi-tag nature of our definition essentially means
that, given tagset C={c;, ..., ¢}, we can split our original problem into m independent
subproblems of estimating a target function [, : Zf = &4, by means of a tagger 0([) : 2z =

3, foranyi € {1, ..., m}. Likewise, the annotations we will be concerned with from now on

LM:ASSETS Ingestion Services — 2nd release Page 5 D2.1.3V13

assgts

will actually be c-annotations, i.e., sets of c;-segments of the form A; ={o,, ..., 03}. Hereafter
we will often drop the prefix ¢;- when the context makes it implicit.

2.1.2 Conditional random fields

As a learning algorithm we have used conditional random fields[Lafferty et al, 2001, Sutton
and McCallum, 2007]. Conditional random fields are graphical models that model a
conditional distribution p(y/x), in which the variable y=(y,,..., y:[/represents the labels to be
predicted, and the variable x=(x,..., x.[/ represents the observed knowledge. In our case y
are the tags to be assigned to the tokens and separators in the text, and x is the information
about these tokens and separators that we will input to the system.

Conditional random fields are often used in classification tasks in which the entities to be
classified have highly dependent features (sequence labelling, IE, etc.). Conditional random
fields differ from other graphical models, such as Hidden Markov Models, that use a joint
probability distribution p(y,x) and therefore require to know the prior probability
distribution p(x). In conditional random fields the input variables x do not need to be
represented, thus avoiding the non-trivial modelling of the prior probability distribution p(x)
and allowing the use of rich and dependent features of the input.

CRF++ is the implementation of linear-chain conditional random fields, that define the
conditional probability of y given x as:

P(y|x:0)= ﬁap(ifﬂfk(y‘-pyt:x‘ﬂ

t=1 k=1

Where: Z(x) is a normalization factor and 6, is one of the K model parameter weights
corresponding to a feature function /(yi.4, Vi, Xi).

Each feature function / describes the sequence x at position t with label y; observed with a
transition from label y;.; to y;

CRF++ allows defining feature functions /4 by using information about the token to be
labelled and about the tokens around the token to be labelled. This is possible by defining
the size of the window of tokens to be considered around the one to be labelled. The
window can be composed by information belonging to tokens that precede the token to be
labelled or belonging to tokens that follow the token to be labelled. Having a wide window
is important in tasks that require identifying long annotated sequence of tokens. For more
details about conditional random fields see [Sutton and McCallum, 2007].

A conditional random field learner needs each t-unit either in a training document or in a
test document to be represented in vectorial form. In this work we have used a set of
features consisting of the original token as it appears in the text, its part of speech, and the
relative lemma, plus information about capitalization, prefixes, suffixes and stemming. To
give the learner more robustness over typographical and orthographical errors, we use as
features:

¢ thetoken lemma,

* the token prefixes (the first character of the token, the first two, the first three, the
first four)

e the token suffixes (the last character of the token, the last two, the last three, the

LM:ASSETS Ingestion Services — 2nd release Page 6 D2.1.3V13

assgts

last four),
¢ the token stem,
e and token capitalization information.

With token capitalization we identify 4 types of capitalization: “all capital”, indicating that all
the letters in the word are uppercased, “first letter capital”, indicating that just the first
letter of the word is uppercased and the rest of the letters are all lowercased, “all lower”,
indicating that none of the letters in the word are uppercased, and “mixed case”, indicating
that there are some uppercased letters and some lowercased letters. We also include as a
feature the part of speech of the token.

As the evaluation measure we use the recently proposed token & separator F; model [Esuli
and Sebastiani, 2010]. According to this model, a tagger is evaluated according to the well-
known F; measure on an event space consisting of all t-units in the text. In other words,
each t-unit uy (rather than each segment, as in the traditional “segmentation F-score”
model) counts as a true positive, true negative, false positive, or false negative for a given
tag ¢, depending on whether u, belongs to ¢; or not in the predicted annotation and in the
true annotation. As argued by Esuli and Sebastiani [2010], this model has the advantage that
it credits a system for partial success and it penalizes both overtagging and undertagging.

As the well-known F; metric combines the contributions of precision (1r) and recall (p) and is

) _2zp_2TP
defined as 1~ %+p 2TP+FP+FEN | , Where TP, FP, and FN stand for the numbers of

true positives, false positives, and false negatives, respectively. Note that F; is undefined
when TP=FP=FN =0; in this case we take F; to equal 1, since the tagger has correctly tagged
all t-units as negative.

We compute F; across the entire test set, i.e., we generate a single contingency table by
putting together all t-units in the test set, irrespective of the text they belong to. We then
compute both micro-averaged F; (denoted by F;") and macro-averaged F; (F;"). F,* is
obtained by (i) computing the tag-specific values TP;, FP; and FN;, (ii) obtaining TP as the sum
2TF

of the TP/s (same for FP and FN), and then (iii) applying the F1=>Tp+FP+EN | formula.

F," is obtained by first computing the tag-specific F; values and then averaging them across
thec;’s.

An advantage of using F; as the evaluation measure is that it is symmetric, i.e., its values do
not change if one switches the roles of the human annotator and the automatic tagger. This
means that F; can also be used as a measure of agreement between any two
annotators/taggers, regardless of whether they are human or machine, since it does not
require one to specify who among the two is the “gold standard” against which the other
needs to be checked. For this reason, in the following section we will use F; both (a) to
measure the agreement between our system and the human annotators, and (b) to
measure the agreement between the two human annotators. This will allow us to judge in a
direct way how far our system is from human performance.

2.1.3 References

Ben-Dov, M., Feldman, R.: Text Mining and Information Extraction. In Oded Maimon, Lior Rokach
(Eds.): Data Mining and Knowledge Discovery Handbook, 2nd ed. Springer, 2010, pp. 809-835

LM:ASSETS Ingestion Services — 2nd release Page 7 D2.1.3V13

assgts

Esuli, A., Marcheggiani, D., Sebastiani, F.,: Information Extraction from Radiology Reports. Presented
at the 7th Italian Conference on Digital Libraries, Pisa, Italy, 2011

Esuli, A., Sebastiani, F.: Evaluating information extraction. In: Proceedings of the Conference on
Multilingual and Multimodal Information Access Evaluation (CLEF’'10), Padova, IT (2010) 100-
111

Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting
and labeling sequence data. In: Proceedings of the 18th International Conference on Machine
Learning (ICML'01), Williamstown, US (2001) 282-289

Li, L., Zhou, R., Huang, D.: Two-phase biomedical named entity recognition using CRFs. Computational
Biology and Chemistry 33(4):334-338 (2009)

McCallum, A.: Information extraction: Distilling structured data from unstructured text. Queue 3(9)
(2005) 48-57

Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Linguisticae
Investigationes 30(1) (2007) 3—26

Sarawagi, S.: Information extraction. Foundations and Trends in Databases 1(3) (2008) 261--377

Sutton, C., McCallum, A.: An introduction to conditional random fields for relational learning. In
Getoor, L., Taskar, B., eds.: Introduction to Statistical Relational Learning. The MIT Press,
Cambridge, US (2007) 93-127

Szarvas, G., Farkas, R., and Busa-Fekete, R.: State-of-the-art anonymisation of medical data with an
iterative machine learning model/framework. Journal of the American Medical Informatics
Association, 14(5):574-580, 2007.

Trogkanis, N., Elkan, C.: Conditional Random Fields for Word Hyphenation. Proceedings of the 48th
Annual Meeting of the Association for Computational Linguistics, July 11-16, 2010, Uppsala,
Sweden, 2010, pp. 366-374.

Zeng, G., Zhang, C., Xiao, Bo., Lin, Z.: CRFs-Based Chinese Named Entity Recognition with Improved
Tag Set. Proceedings of the 2009 WRI World Congress on Computer Science and Information
Engineering, 2009, Los Angeles, US, 2009:519-522

2.2 Automatic Classification of Metadata Records

As part of their routine information management protocols, many organizations and
content providers classify their content (or the metadata that describe these contents)
according to a set of categories (or “classification scheme”) that effectively describe the
domain this content is about. There is often the case that, unless the domain is trivial in
nature, this classification scheme has a hierarchical structure, since a non-hierarchical, flat
structure would be too clumsy to accommodate the high number of categories that describe
the domain. We will indeed assume that content providers do structure their content
according to a hierarchically shaped classification scheme. This assumption is non-
restrictive, since a flat classification scheme may also be seen as a hierarchical classification
scheme consisting of only two levels, the root (level 0) and all the categories (level 1)
appended to the root as children.

The field of supervised learning that tackles the classification of textual items (as metadata
records are) under hierarchically structured classification schemes is called hierarchical text
categorization (HTC). Notwithstanding the fact that most large-sized classification schemes
for text (e.g. the ACM Classification Scheme, the MESH thesaurus, the NASA thesaurus)

LM:ASSETS Ingestion Services — 2nd release Page 8 D2.1.3V13

assgts

indeed have a hierarchical structure, the attention of text classification (TC) researchers has
mostly focused on algorithms for “flat” classification. These algorithms, once applied to a
hierarchical classification problem, are not capable of taking advantage of the information
inherent in the class hierarchy, and may thus be suboptimal, in terms of efficiency and/or
effectiveness. On the contrary, many researchers have argued that by leveraging on the
hierarchical structure of the classification scheme, heuristics of various kinds can be brought
to bear that make the classifier more efficient and/or more effective. This is the reason why,
for the purposes of T2.1.3, we have focused our attention on algorithms explicitly devised
for HTC.

An important intuition that underlies HTC algorithms is that by viewing classification as the
identification of the paths that start from the root, funnel the document down to the
subtrees where it belongs (in “Pachinko machine” style), entire other subtrees can be
pruned from consideration. That is, when the classifier corresponding to an internal node
outputs a negative response, the classifiers corresponding to its descendant nodes do not
need to be invoked any more, thus reducing the computational cost of classifier invocation
exponentially [Chakrabarti et al. 1998; Koller and Sahami 1997].

A second important intuition is that, by training a binary classifier for an internal node
category on a well-selected subset of training examples of local interest only, the resulting
classifier may be made more attuned to recognizing the subtle distinctions between
documents belonging to that node and those belonging to its sibling nodes. While this
technique promises to bring about more effective classifiers, it is also going to improve
efficiency, since a smaller set of examples is used in training, thereby making classifier
learning speedier. Many of these intuitions have been used in close association with several
learning algorithms; the most popular choices in this respect have been naive Bayesian
methods, neural networks, support vector machines and example-based classifiers.

In T2.1.3 we have used an HTC algorithm based on boosting technology, called
TreeBoost.MH [Esuli et al, 2008]. The reasons for this choice include the fact that
TreeBoost.MH has proved to be highly efficient highly accurate and above all competitive
algorithms we tested in several applications. We have previously applied this technology for
the classification of newswire reports [Esuli et al, 2008], medical discharge reports [Esuli et
al, 2008] and radiology reports [Baccianella et al, 2011]. TreeBoost.MH is a multi-label (ML)
HTC algorithm that consists of a hierarchical variant of AdaBoost.MH [Schapire and Singer,
2000], the most important member of the boosting algorithms family. Here, multi-label (ML)
means that a document can belong to zero, one, or several categories at the same time.
TreeBoost.MH embodies several intuitions that had arisen before HTC (e.g. the intuitions
that both feature selection and the selection of negative training examples should be
performed “locally” (i.e. by paying attention to the topology of the classification scheme).
TreeBoost.MH also incorporates the intuition that the weight distribution that boosting
algorithms update at every boosting round should likewise be updated “locally”. All these
intuitions are embodied within TreeBoost.MH in an elegant and simple way, i.e. by defining
TreeBoost.MH as a recursive algorithm that uses AdaBoost.MH as its base step, and that
recurs over the tree structure.

In the next two sections we give a concise description of TreeBoost.MH.
2.2.1 TreeBoost.MH: A hierarchical version of AdaBoost.MH for multi-label TC

When discussing an HTC application it is always important to specify what the semantics of

LM:ASSETS Ingestion Services — 2nd release Page 9 D2.1.3V13

assgts

the hierarchy is (i.e., to specify the semantic constraints that a supposedly perfect classifier
would enforce). Knowing which constraints are in place has important consequences on
which algorithms we might want to apply to this task, and more importantly, on how we
should evaluate these algorithms. For instance, one should specify whether a document can
in principle belong to zero, one, or several categories (which is indeed our assumption
within T2.1.3), or whether it always belongs to one and only one category. No less
importantly, one should specify whether it is the case that:

1. adocument d that is a positive example of a category is also a positive example of all
its ancestor categories. We assume this to be the case.

2. adocument d can in principle be a positive example of an internal node category and
at the same time not be a positive example of any of its descendant categories. We
assume this to be the case.

Assumption 2 is indeed useful for tackling datasets in which documents with these
characteristics do occur, while at the same time not preventing us to deal with datasets with
the opposite characteristics. A consequence of these two assumptions is that the set of the
positive training examples of a non-leaf category is a (possibly proper) superset of the union
of the sets of positive training examples of all its descendant categories.

TreeBoost.MH embodies several intuitions that had arisen before within HTC.

The first, fairly obvious intuition (which lies at the basis of practically all HTC algorithms
proposed in the literature) is that, in a hierarchical context, the classification of a document
is to be seen as a descent through the hierarchy, from the root to the (internal or leaf)
categories where the document is deemed to belong. In ML classification this means that
each non-root category has an associated binary classifier which acts as a “filter” that
prevents unsuitable documents to percolate to the descendants of the category. All test
documents that a classifier deems to belong to a category are passed as input to all the
binary classifiers corresponding to its children categories, while the documents that the
classifier deems not to belong to the category are “blocked” and analysed no further. Note
that it may well be the case that a document is deemed to belong to a category by its
corresponding classifier and is then rejected by all the binary classifiers corresponding to its
children categories; this is indeed consistent with assumption (2) above. In the end, each
document may thus reach zero, one, or several (leaf or internal node) categories, and is thus
classified as belonging to them.

The second intuition is that the training of a classifier should be performed “locally”, i.e. by
paying attention to the topology of the classification scheme. To see this, note that, during
classification, if the classifier for a category has performed reasonably well, the classifier for
the children categories will only (or mostly) be presented with documents that belong to the
subtree rooted in that category. As a result, the training of a classifier for a given category
should be performed by using, as negative training examples, the positive training examples
of its sibling categories, with the obvious exception of the documents that are also positive
training examples of the category itself. In particular, training documents that only belong to
categories other than those mentioned above need not be used. The rationale of this choice
is that the negative training examples thus selected are “quasi-positive” examples of the
category [Fagni and Sebastiani, 2010], i.e. are the negative examples that are closest to the
boundary between the positive and the negative region of the category (a notion akin to
that of “support vectors” in SVMs), and are thus the most informative negative examples
that can be used in training. This is beneficial also from the standpoint of (both training and

LM:ASSETS Ingestion Services — 2nd release Page 10 D2.1.3V13

assgts

classification time) efficiency, since fewer training examples and fewer features are
involved.

The third intuition is similar, i.e. that feature selection should also be performed “locally”,
by paying attention to the topology of the classification scheme. As above, if the classifier
for the category has performed reasonably well, the classifiers for its children categories will
only (or mostly) be presented with documents that belong to the subtree rooted in the
category itself. As a consequence, for the classifiers corresponding to the children
categories, it is cost-effective to employ features that are useful in discriminating (only)
among themselves. The features that discriminate among categories lying outside the
subtree rooted in the category are too general and the features that discriminate among the
subcategories of the children categories are too specific. This intuition, albeit in the slightly
different context of single-label classification was first presented in [Koller and Sahami,
1997].

TreeBoost.MH also embodies the novel intuition that the weight distribution that boosting
algorithms update at every boosting round should likewise be updated “locally”. In fact, the
two previously discussed intuitions indicate that hierarchical ML classification is best
understood as consisting of several independent (flat) ML classification problems, one for
each internal node of the hierarchy. In a boosting context, this means that several
independent distributions, each one “local” to an internal node, should be generated and
updated by the process. In this way, the “difficulty” of a category will only matter relative to
the difficulty of its sibling categories. This intuition is of key importance in allowing
TreeBoost.MH to obtain exponential savings in the cost of training over AdaBoost.MH.

TreeBoost.MH incorporates these four intuitions by factoring the hierarchical ML
classification problem into several “flat” ML classification problems, one for every internal
node in the tree. TreeBoost.MH learns in a recursive fashion, generating a binary classifier
for each non-root category, by means of which hierarchical classification can be performed
in “Pachinko machine” style.

Learning in TreeBoost.MH proceeds by first identifying whether a leaf category has been
reached, in which case nothing is done, since the classifiers are generated only at internal
nodes. If an internal node has been reached, a ML feature selection process may (optionally)
be run to generate a reduced feature set on which the ML classifier for the node will
operate. This may be dubbed a “glocal” feature selection policy, since it takes an
intermediate stand between the well-known “global” policy (in which the same set of
features is selected for all the categories) and the “local” policy (in which a different set of
features is chosen for each different category). The glocal policy selects a different set of
features for each (maximal) set of sibling categories. We use information gain as the feature
selection function and Forman’s [2004] round robin as a feature score globalization method.
After the reduced feature set has been identified, TreeBoost.MH calls upon AdaBoost.MH to
solve a ML (flat) classification problem for the set of sibling categories. Again, in order to
implement the “quasi-positive” policy discussed above, the negative training examples of a
category are taken to be the set of the positive training examples of its sibling categories
minus the positive training examples of the category itself. Note that this implements the
view of several independent, “local” distributions being generated and updated during the
boosting process.

Finally, after the ML classifier for a maximal set of sibling categories has been generated, for
each such category a recursive call to TreeBoost.MH is issued that processes the subtree

LM:ASSETS Ingestion Services — 2nd release Page 11 D2.1.3V13

assgts

rooted in the category in the same way. The final result is a hierarchical ML classifier in the
form of a tree of binary classifiers, one for each non-root node, each consisting of a
committee of decision stumps.

2.2.2 Related work

HTC was first tackled in Wiener et al. [1995], in the context of a TC system based on neural
networks and latent semantic indexing. The intuition that it could be useful to perform
feature selection locally by exploiting the topology of the tree is originally due to Koller and
Sahami [1997]. However, this work was dealing with single-label text categorization, which
means that feature selection was performed “collectively”’(i.e., relative to the set of
children of each internal node). Given that in T2.3.1 we are in an ML classification context,
we instead do it “individually” (i.e. relative to each child of any internal node). The intuition
that the negative training examples for training the classifier for a given category could be
limited to the positive training examples of categories topologically close to it is due to Ng et
al. [1997] and Wiener et al. [1995]. The fact that in an ML classification context the
classifiers at internal nodes act as “routers” informs much of the HTC literature and is
explicitly discussed in Ruiz and Srinivasan [2002], which proposes a HTC system based on
neural networks.

Other works in hierarchical text categorization have focused on other specific aspects of the
learning task. For instance, the “shrinkage’”” method presented in McCallum et al. [1998] is
aimed at improving parameter estimation for data-sparse leaf categories in a single-label
HTC system based on a naive Bayesian method. The underlying intuitions are specific to
naive Bayesian methods and do not easily carry over to other contexts. Incidentally, the
naive Bayesian approach seems to have been the most popular among HTC researchers,
since several other HTC models are hierarchical variations of naive Bayesian learning
algorithms [Chakrabarti et al. 1998; Gaussier et al. 2002; Toutanova et al. 2001; Vinokourov
and Girolami 2002]. SVMs have also recently gained popularity in this respect [Cai and
Hofmann 2004; Dumais and Chen 2000; Liu et al. 2005; Yang et al. 2003].

2.2.3 References

Baccianella, S., Esuli, A., & Sebastiani, F. (2011). Single-Label Classification of Radiology Reports under
the ACR Classification Scheme. Presented at the 7th Italian Research Conference on Digital
Libraries, Pisa.

Cai, L., & Hofmann, T. (2004). Hierarchical document categorization with support vector machines. In
Proceedings of the 13th ACM International Conference on Information and Knowledge
Management (CIKM’04), pp. 78-87.

Chakrabarti, S., Dom, B. E., Agrawal, R., & Raghavan, P. (1998). Scalable feature selection,
classification and signature generation for organizing large text databases into hierarchical
topic taxonomies. Journal of Very Large Data Bases, 7(3), 163—178.

Dumais, S. T., & Chen, H. (2000). Hierarchical classification of web content. In Proceedings of the 23rd
ACM International Conference on Research and Development in Information Retrieval
(SIGIR’00) (pp. 256—263). Athens, GR.

Esuli, A., Fagni, T., & Sebastiani, F. (2008). Boosting Multi-label Hierarchical Text Categorization.
Information Retrieval, 11(4):287-313.

Fagni, T. & Sebastiani, F. (2010). Selecting Negative Examples for Hierarchical Text Classification: An
Experimental Comparison. Journal of the American Society for Information Science and

LM:ASSETS Ingestion Services — 2nd release Page 12 D2.1.3V13

assgts

Technologies, 61(11):2256-2265.

Forman, G. (2004). A pitfall and solution in multi-class feature selection for text classification. In Pro-
ceedings of the 21st International Conference on Machine Learning (ICML’04). Banff, CA.

Gaussier, E., Goutte, C., Popat, K., & Chen, F. (2002). A hierarchical model for clustering and
categorising documents. In Proceedings of the 24th European Colloquium on Information
Retrieval Research (ECIR’02) (pp. 229-247). Glasgow, UK.

Koller, D., & Sahami, M. (1997). Hierarchically classifying documents using very few words. In Pro-
ceedings of the 14th International Conference on Machine Learning (ICML'97) (pp. 170-178).
Nashville, US.

Liu, T. Y., Yang, Y., Wan, H., Zeng, H. J., Chen, Z.,, & Ma, W. Y. (2005). Support vector machines
classification with a very large-scale taxonomy. SIGKDD Explorations, 7(1), 36—43.

McCallum, A. K., Rosenfeld, R., Mitchell, T. M., Ng, A. Y. (1998). Improving text classification by
shrinkage in a hierarchy of classes. In Proceedings of the 15th International Conference on
Machine Learning (ICML'98) (pp. 359-367). Madison, US.

Ng, H. T., Goh, W. B., Low, K. L. (1997). Feature selection, perceptron learning, and a usability case
study for text categorization. In Proceedings of the 20th ACM International Conference on
Research and Development in Information Retrieval (SIGIR’97) (pp. 67—73). Philadelphia, US.

Ruiz, M., & Srinivasan, P. (2002). Hierarchical text classification using neural networks. Information
Retrieval, 5(1), 87-118.

Schapire, R. E., & Singer, Y. (2000). BOOSTEXTER: A boosting-based system for text categorization.
Machine Learning, 39(2/3), 135-168.

Toutanova, K., Chen, F., Popat, K., & Hofmann, T. (2001). Text classification in a hierarchical mixture
model for small training sets. In Proceedings of the 10th ACM International Conference on
Information and Knowledge Management (CIKM’01) (pp. 105-113). Atlanta, US.

Vinokourov, A., & Girolami, M. (2002). A probabilistic framework for the hierarchic organisation and
classification of document collections. Journal of Intelligent Information Systems, 18(2/3),
153-172.

Wiener, E. D., Pedersen, J. O., & Weigend, A. S. (1995). A neural network approach to topic spotting.
In Proceedings of the 4th Annual Symposium on Document Analysis and Information Retrieval
(SDAIR’95) (pp. 317-332). Las Vegas, US.

Yang, Y., Zhang, J., & Kisiel, B. (2003). A scalability analysis of classifiers in text categorization. In
Proceedings of the 26th ACM International Conference on Research and Development in
Information Retrieval (SIGIR’03) (pp. 96—-103). Toronto, CA.

LM:ASSETS Ingestion Services — 2nd release Page 13 D2.1.3V13

assgts

3. Software Requirements Overview

3.1 Knowledge extraction

Europeana metadata contains both structured and unstructured information. Structured
information is provided by those metadata fields that identify well-specified type of
information (e.g., "date", "creator", "language", etc.). Unstructured information is provided
by those metadata fields that act as containers of generic information (e.g., "description").

The aim of the knowledge extraction service (Task 2.1.2) is to provide the ASSETS platform
with automatic information extraction functionalities that enable to extract relevant
structured information (e.g. names of persons, locations, organizations, from unstructured
metadata fields contained in Europeana records).

3.1.1 Problem statement

The presence of relevant information stored only in unstructured fields affects the metadata
of almost any Europeana content provider. In these cases, potentially relevant information
is not given a proper representation in the Europeana records, but it is mentioned in
generic, unstructured, textual fields.

The recognition and extraction into dedicated data structures of relevant information
contained in unstructured text fields would improve the Europeana records by supporting
the completion and/or correction of metadata fields in the original records. Additionally it
supports enriching such records with additional fields and enabling the Europeana users to
access and search such additional structured information.

3.1.2 Product position statement

The Knowledge extraction service enables Europeana and Content Providers who need to
enrich their content by extracting knowledge from unstructured text to perform automatic
extraction, once provided with an example set of manually annotated documents.

Unlike completely manual processing or rule-based annotation systems, the knowledge
extraction service allows to process large amounts of data by providing a set of examples
without requiring the provider to learn complex rule definitions for rule-based annotations.
In our approach, the provider is asked just to annotate the relevant pieces of text for the
various types of information to be extracted.

3.1.3 Stakeholder Descriptions

Name: Content Providers and Europeana

Description: Any content provider that provides data to Europeana, whose data contains
relevant fields for the extraction process (e.g. textual descriptions) can take benefit of these
services. The Europeana ingestion team may use the services for the data already acquired
by Europeana.

Responsibilities: These stakeholders are responsible to:

(i) define the annotation schema that identifies the relevant types of information

LM:ASSETS Ingestion Services — 2nd release Page 14 D2.1.3V13

assgts

to be extracted;

(ii) select and annotate a set of records, following the annotation schema.

Name: ISTI-CNR

Description: The research group at ISTI-CNR that is responsible for the knowledge extraction
task.

Responsibilities: This stakeholder is responsible to:

(i) support content providers and Europeana in the process of defining the
annotation schema;

(ii) provide the proper linguistic analysis, statistical analysis, and machine learning
methods best suited for the extraction task as defined by the annotation
schema;

(iii) provide the functionalities to include the generated automatic extractors into

the ASSETS ingestion workflow.

3.1.4 User Environment

This service is intended to provide its functionalities to ingestion workflow service of the
ASSETS platform without any direct interaction with the user.

3.1.5 Feature or Functionality Overview

The development of an information extraction service for a specific type of information is a
process that involves three steps:

1. Definition of an annotation schema for a specific information extraction process.
The data provider identifies a relevant type of information to be extracted from its
records.

2. Definition of a training set for a specific information extraction process. The data
provider produces a training set of manually annotated records following the
annotation schema. There is no upper limit to the number of annotated records that
could be generated by the content providers. This training set of annotated records
is given in input to the automatic knowledge extraction system in order to produce
and extraction model.

3. Automatically enrich metadata records by extracting information from unstructured
text. The content provider sends to the service a set of non-annotated records and
specifies the trained extraction model to be applied. The service returns a set of
new instances of the records in which the information that is relevant to the
extraction model has been annotated and copied into dedicated metadata fields.

3.1.6 System Qualities

Usability: The service will provide an APl and the relative documentation for inclusion into
the ASSETS platform ingestion workflow.

LM:ASSETS Ingestion Services — 2nd release Page 15 D2.1.3V13

assgts

Reliability: The service does not provide at any time critical functionalities. The service
provides methods for process progress control for batch processing requests.

Performance: Information extraction is a task that is part of the ingestion workflow. Given
that this process is executed in back-office as part of the ASSETS platform and also that the
knowledge extraction process does not require active user interaction, the performance of
the system are not a critical aspect. However, the system is based on state-of-the art
algorithms and data structures in order to provide the users with the maximum efficiency.
Annotation requests for a single record to be typically complete in 5-10 seconds. Batch
processing requests exploits bulk processing of records in order to speed up the annotation
process that is expected to be about on order of magnitude faster than online annotation.

User Interfaces: The service does not require a user interface.

Software Interfaces: The service is accessible within the ASSETS ingestion workflow service
by providing a RESTful HTTP interface.

3.1.7 System Constraints

The service is developed in Java.
3.1.8 System Compliance

Licensing Requirements: The service adopts an open source, EUPL-compatible license.

Legal, Copyright, and Other Notices: Third party components are a Java virtual machine and
several Java libraries (e.g. like Log4J). Any other additional library referred by the service is
licensed with an open source, EUPL-compatible license.

3.1.9 System Documentation

Javadoc documentation for developers is provided for the service API.

3.2 Metadata Classification Service

The aim of the metadata classification service (Task 2.1.3) is to provide the ASSETS platform
with the functionality of automated classification of metadata records under a taxonomy of
categories of interest.

The classification process consists of linking a record to zero, one, or several categories from
a (taxonomically organized) set of predefined categories (aka "classes", or "concepts", or
"codes"). The set of predefined categories is called the classification scheme. Classification is
thus akin to "populating" a taxonomy with instances of the concepts in the taxonomy.

Europeana records are provided by many different content providers, which may:
(i) not use any classification schema for their data,

(ii) use a very specific classification scheme custom-tailored to specific local purposes
of the content provider,

(iii) use a standard well-known classification schema for their data, either general-
purpose (e.g., Library of the Congress Subject Headings, LCSH) or discipline-specific
(e.g., Medical Subject Headings).

LM:ASSETS Ingestion Services — 2nd release Page 16 D2.1.3V13

assgts

Among these three cases the last one is certainly the preferred one for Europeana.

The metadata classification service enables Europeana and content providers to
automatically classify unlabelled metadata records, following a set of general-purpose
and/or discipline-specific classification schema.

The ultimate goal of the task is making the searching and browsing experience from the
user’s view more satisfactory; e.g.:

A user can navigate from record to concept and to other records belonging to same
concept or sibling concepts;

user can restrict search to records belonging to a specific concept;

user can ask to group the search results according to the concepts they belong to.
3.2.1 Problem Statement

Europeana, Content Providers, and Europeana users, could benefit from having the
metadata records properly linked to a set of classes in a general-purpose or discipline-
specific taxonomy. Most of Europeana records are currently not structured into general-
purpose and/or discipline-specific taxonomies, losing the possibility to search, browse and
navigate through records by considering the concepts/classes they belong to. Performing
the classification of Europeana records into general-purpose and/or discipline-specific
taxonomies would enable new access methods to records based on the concept/classes
they belong to.

3.2.2 Product Position Statement

The metadata classification service enables to perform automatic metadata classification of
record once provided with an example set of manually classified records, supporting
Europeana and Content Providers in the process of enriching their content by classifying
their records according to a classification schema.

Instead of adopting a completely manual classification of documents, which requires a large
human effort, or a rule-based classification method, which requires the provider to learn
complex rule definitions, the metadata classification service allows to process large amounts
of data by providing a relatively small set of examples with regard to the size of metadata
collections.

3.2.3 Stakeholder Descriptions

Name: Content Providers and Europeana

Description: Any content provider that provides data to Europeana and the Europeana
ingestion team would be interested to use this service for metadata enrichment.

Responsibilities: These stakeholders will be responsible to:

(i) define the classification scheme to be used for record classification;

(ii) select and manually classify a set of records, following the classification scheme.
Name: ISTI-CNR

Description: The research group at ISTI-CNR that is responsible for the metadata
classification task.

LM:ASSETS Ingestion Services — 2nd release Page 17 D2.1.3V13

assgts

Responsibilities: This stakeholder will be responsible to:

(i) support content providers and Europeana in the process of defining the
classification scheme;

(ii) design and develop the proper linguistic analysis, statistical analysis, and
machine learning methods best suited for the classification task, as defined by
the classification schema;

(iii) provide the functionalities to include the generated metadata classifiers into the
ASSETS ingestion workflow.

3.2.4 User Environment

This service is intended to provide functionalities to other services of ASSETS/Europeana,
without any direct interaction with the user.

3.2.5 Feature or Functionality Overview

The development of a classification service for a given classification scheme is a process that
involves three steps:

1. Definition of a classification scheme for a specific metadata classification process.
The content provider identifies a classification scheme for the classification of its
records.

2. Definition of a training set for a specific metadata classification process. The content
provider produces a training set of at least one thousand manually classified records
following the classification scheme.

3. Classify a record according to a given taxonomy. The data provider sends to the
service a set of unclassified records, and specifies the metadata classification model
to be adopted. The service returns a set of new instances of the records in which the
proper codes are assigned to records.

3.2.6 System Qualities

Usability: The service provides an API, and the relative documentation, for inclusion into the
ASSETS platform ingestion workflow.

Reliability: The service does not provide at any time critical functionalities. The service
provides methods for process progress control for batch processing requests.

Performance: Performance is not a critical issue for the classification service, since it is
performed in the backoffice part of Europeana, and it does not require user interaction.
However, the system adopts state-of-the-art algorithms and data structures in order to
provide an efficient service. Online classification requests for a single record will typically
complete in 2-5 seconds, while bulk requests will be processed about one order of
magnitude faster, exploiting bulk processing of records.

User Interfaces: The service does not require a user interface.

Software Interfaces: The service is accessible within the ASSETS ingestion workflow service
by means of a RESTful HTTP interface.

LM:ASSETS Ingestion Services — 2nd release Page 18 D2.1.3V13

assgts

3.2.7 System Constraints
The service is developed in Java.

3.2.8 System Compliance

Licensing Requirements: The service adopts an open source, EUPL-compatible license.

Legal, Copyright, and Other Notices: Third party components are a Java virtual machine and
several Java libraries (e.g. like Log4J). Any other additional library referred by the service is
licensed with on open source, EUPL-compatible license.

3.2.9 System Documentation

Javadoc documentation for developers is provided for the service API.

LM:ASSETS Ingestion Services — 2nd release Page 19 D2.1.3V13

assgts

3.3 Ingestion Workflow service

3.3.1 Problem statement

The Europeana web portal implements a search engine over the European cultural heritage.
In order to provide this functionality, an index with the description of the masterpieces of
objects available in Galleries, Libraries, Archives and Museum (GLAM) institutions was
created by aggregating information retrieved from the Content Providers (CPs, see Figure 1).

0909056000000

BEGian (et Ceuie Oemn GRGn GGUD Getn Goaon (SR GRimR (Ehan

Figure 1 Aggregators in the Europeana organisation mode

The aggregation and ingestion are complex processes which were formalized in a flow
diagram within the requirements specification for the Danube release of Europeana. A
unified ingestion manager application is developed in order to offer support for scheduling,
executing and monitoring ingestion related activities. The professional services that have
been developed within the ASSETS project address the steps 7.Data Enrichment and 9. AIP-
Phase of the process sketched in Figure 2.

Further descriptions of each ingestion related task is available in Europeanalabs:

http://europeanalabs.eu/wiki/SpecificationsDanubeRequirementsContentInTools

LM:ASSETS Ingestion Services — 2nd release Page 20 D2.1.3V13

assgts

The integration of the New Ingestion Toolset: united workflow
7 —
ata Providers ani §
1 Data Provid d

[Aggregators Agreements i Sugar CRM for contact details,

i signed and returned, creating and storing provider ID's,

! submission form filled and returned storing estimations, creating reporting !
|
|

3. |
SIPCREATOR <4
For PARTNERS TO DO
the mapping. analysis and INGESTION MANAGER

i ng?ﬂz‘:ﬁ%’:{;ﬂ;’;’?g&? For thumbnail caching, reporting of broken links,

! - possibility to seephuw- publishing and managing datasets in portal

i the data will look like in 5 i

! the portal (content checker) 2la I>| DATA ENRICHMENT 8 3

! 3|5 P

i T |8 * AIP-PHASE

1 4 4 = | @ 6 THUMBNAIL CACHING For indexing, /

i S |3 : d licationand

E Licensing tool/ Public Domain tool = (I L REPOX2SIP rey oagn of repllihaiisirilnan

| for the license selection |/ OAI-PMH infrastructure b gk |g ks % J

E and testing the current domain 4 7/ For harvesting and Ten dart; mt: rjlagln;:;t I

! planning harvestings e M DO

! \

i\ b,

1 |

i PROVIDER'S REPOSITORY 1

: for storing outcome el ﬂ ﬂ !

i

i from SIP creator Ghidelines

! Metadata specifications

|

Figure 2 The Europeana Ingestion Process

3.3.2 Functionality overview

The metadata enrichment are the subject of this document, and they belong to the
workflow (step 7, Figure 2) while the indexing services and preservation services (Step 9,
Figure 2) will be ordinately described in the deliverables D2.2.5 (“Scalable Content Indexing
and Ranking”) and D2.3.2 (“Deployed Preservation Services”).

ASSETS project extends the GUI of the Europeana Ingestion “Control Panel” by
implementing screens that manage the following functionalities:

e Enrichment model learning: by using a training set appropriate for their metadata,
the content providers or Europeana are allowed to run the learning of enrichment
models for metadata classification or knowledge extraction,

e Enrichment by metadata classification: the classification of a collection can be
performed by selecting an appropriate classification model,

e Enrichment by knowledge extraction: the extraction of the structured knowledge
from the object descriptions can be performed similarly to the classification by
selecting an appropriate model and the collection to be enriched.

During the project specification phase, the most of the professional and the indexing
services were identified to belong to the post ingestion process. In our case this is
equivalent to the Access Information Package creation Phase (AIP-Phase) indicated in step 9
of the Europeana Ingestion Process.

In the DoW, these services were defined to be accessed through REST or command line
interfaces. During the integration in Europeana, these services will be bound within the
UIM-Control Panel as well.

@000

IASSETS Ingestion Services — 2nd release Page 21 D2.1.3V13

assgts

3.3.3 System Qualities

Usability: The service will provide a web based graphical UIM and a user manual to support
its usage.

Reliability: The enrichment of large metadata collections or the model training might take
long time, the invocation must not block the GUI of the ingestion workflow management.
Moreover, the GUI must display the status of the training/enrichment tasks.

Performance: The ingestion process is a back office process, and the response time of the
Ingestion Workflow interface must be in the range of regular web applications.

User Interfaces: The GUI must be web based and support the most common web browsers
(i.e. Internet explorer, Mozilla)

Software Interfaces: The Ingestion Workflow must be able to invoke webservices remotely
and must be able to work on a cluster infrastructure. The workflow must implement an easy
extendable architecture.

LM:ASSETS Ingestion Services — 2nd release Page 22 D2.1.3V13

assgts

4. Technical Documentation:

4.1 UML Diagrams

4.1.1 Knowledge extraction service

Use case: Training of a knowledge extraction model

The Knowledge Extraction Service is based on the use of supervised learning algorithms. In
order to allow the service to perform knowledge extraction of a certain type of information,
a training set has to be provided as input to the learning algorithm. The training set consists
of examples of records in which the relevant information to be extracted has been manually
annotated by human experts.

Actor: Content provider.

The content provider generates a training set containing manually annotated records in
order to support the machine learning process of the knowledge extraction service for
relevant information types, e.g., time expressions, named entities (persons, locations,
organizations).

Basic flow of events:

LM:ASSETS Ingestion Services — 2nd release Page 23 D2.1.3V13

assgts

0 Data reception and
paramelers check

4 Exception handler

Figure 3 Flow of events for the training of the extraction service

0. The use case begins when the learning algorithm is provided with a training set of
examples of annotated records.

1. The relevant textual metadata fields of the records composing the training set are
processed by linguistic and statistical tools in order to produce their vectorial
representation that will then be processed by the learning algorithm.

2. The learning algorithm processes the vectorial representations and learns a
knowledge extraction model.

3. The information relative to the transformation of records into the corresponding
vectorial representations and the knowledge extraction model are stored for future
use by the knowledge extraction service.

4. In case an error condition happens during the execution, any exception is caught by
an exception handler that manages the error in order to guarantee a safe conclusion
of the process (e.g., properly releasing the acquired resources).

5. The learning process ends.

Key scenarios:

LM:ASSETS Ingestion Services — 2nd release Page 24 D2.1.3V13

assgts

1. Success: correct input parameters and well-formed training set.
2. Error: wrong input parameters or incorrect training set format.
Post-conditions:

1. Success: an extraction model is generated and made available to the ingestion
workflow.

2. Error: no extraction model is generated and an error message is returned.

Use case: Knowledge Extraction Service invocation

The Knowledge Extraction Service is a plugin in the Ingestion workflow service and provides
enrichment functionality.

Actor: ASSETS ingestion workflow user.

As part of the configuration of the ingestion workflow service, the actor selects the records
to be processed by the knowledge extraction service, the proper type of knowledge to be
extracted, and after the service execution the actor inspects the results.

LM:ASSETS Ingestion Services — 2nd release Page 25 D2.1.3V13

assgts

0 Data reception and
parameters check

Extraction njedel availabhe

1 Extraction model
refrieved from storage

Extractign nrode — \ y
net aviilable = Ul sl el
£5ing of records

W

3 Knowledge extraction
from records

W

5 Firalization of the |
extraction process I

Figure 4 Flow of the events for the enrichment process based on the extraction
service

Basic flow of events:

0. The ingestion workflow service notifies the knowledge extraction service about the
records that have to be processed, the type of knowledge that has to be extracted
from records, and other relevant parameters. Ingestion service sends the records to
be processed to the knowledge extraction service. If a knowledge extraction model
for the required type of information is not available, the extraction process
immediately ends; no output is produced.

1. The proper knowledge extraction model and the information relative to the
transformation of records into the corresponding vectorial representations are
retrieved from storage.

2. Therecords provided in input are converted into vectorial representations.

3. Each vectorial representation is processed by the knowledge extraction model,
resulting in annotation/extraction of pieces of text from the original record. Such

LM:ASSETS Ingestion Services — 2nd release Page 26 D2.1.3V13

assgts

pieces of text are used to fill in the metadata fields that are designed to store the
type of information that is the subject of the extraction process (e.g., author, date).

4. In case an error condition happens during the execution, any exception is caught by
an exception handler that manages the error in order to guarantee a safe conclusion
of the process (e.g., properly releasing the acquired resources).

5. Once the knowledge extraction service has completed its processing, the ingestion
service retrieves the enriched version of the records from the knowledge extraction
service.

Key scenarios:

1. Success: the input parameters are correct and the requested knowledge extraction
model is available.

2. Error: wrong input parameters or the requested knowledge extraction model is
unavailable.

Post-conditions:

1. Success: an enriched and distinct copy of the input record is made available to the
ingestion workflow service.

2. Error: no enriched records are generated.

4.1.2 Metadata classification service

Use case: Training of a classification model

The Metadata Classification Service is implemented by using supervised learning algorithms.
In order to allow the service to perform classification of records under a given classification
scheme, a training set has to be provided as input to the learning algorithm. The training set
consists of examples of records that have been manually classified by human experts.

Actor: Content Provider.

The content provider generates a training set in the form of manually classified records, in
order to support the training of the automatic metadata classification service for relevant
classification schemes.

Basic flow of events:

LM:ASSETS Ingestion Services — 2nd release Page 27 D2.1.3V13

assgts

D Data reception and)

=

Figure 5 Flow of events for the training of the classification service

0. The use case begins when the learning algorithm is provided with a training set of
examples of classified records.

1. The textual metadata fields of the records composing the training set are combined
and processed by linguistic and statistical tools in order to produce vectorial
representation that will then be processed by the learning algorithm.

2. The learning algorithm processes the vectorial representations and learns a
classification model.

3. The information relative to the transformation of records into the corresponding
vectorial representations and the classification model are stored for future use by
the classification service.

4. In case an error condition happens during the execution, any exception is caught by
an exception handler that manages the error in order to guarantee a safe conclusion
of the process (e.g., properly releasing the acquired resources).

5. The learning process ends.

LM:ASSETS Ingestion Services — 2nd release Page 28 D2.1.3V13

assgts

Key Scenarios:
1. Success: correct input parameters and well-formed training set.
2. Error: wrong input parameters or training set in incorrect format.
Post-conditions:

1. Success: a classification model is generated and made available to the ingestion
workflow service.

2. Error: no classification model is generated.

Use case: metadata classification service invocation

The Metadata Classification Service is a plugin in the Ingestion workflow service and
provides the enrichment functionality.

Actor: ASSETS ingestion workflow manager (user).

As part of the configuration of the ingestion workflow service, the actor selects the records
to be processed by the metadata classification service; the proper classification scheme is
then applied, and after the service execution the actor inspects the results.

LM:ASSETS Ingestion Services — 2nd release Page 29 D2.1.3V13

assgts

Basic flow of events:

0 Data reception and

Classificatiof nmodel availa bhe

1 Classification model
retrieved from storage

Classilizption nrodel

ned apanlable W 4 Exception handler
2 Linguistic/statistic
s5ing of records

R
3 Classification of
records

Figure 6 Flow of the events for the enrichment process based on the classification

4.

service

The ingestion workflow service notifies the metadata classification service about the
records that have to be processed, the classification scheme to be applied, and
other relevant parameters. Ingestion workflow service sends the records to be
processed to the classification service.

The proper classification model and the information relative to the transformation
of records into the corresponding vectorial representations are retrieved from
storage.

The records provided in input are converted into vectorial representations.

Each vectorial representation is processed by the classification model, resulting in
classification label begin associated to the original record.

In case an error condition happens during the execution, any exception is caught by

LM:ASSETS Ingestion Services — 2nd release Page 30 D2.1.3V13

assgts

an exception handler that manages the error in order to guarantee a safe conclusion
of the process (e.g., properly releasing the acquired resources).

5. Once the classification service has completed its processing the ingestion service
retrieves the classified version of the records from the classification service.

Key scenarios:

1. Success: the input parameters are correct and the requested metadata classification
model is available.

2. Error: wrong input parameters or the requested metadata classification model is
unavailable.

Post-conditions:

1. Success: an enriched and distinct copy of the input record is made available to the
ingestion workflow service.

2. Error: no enriched records are generated.

4.1.3 Ingestion workflow management

The execution of the Ingestion Workflow will perform the actions indicated in the activity
diagram presented in the Figure 7. This use-case describes the activities which are
performed during the invocation of the ingestion workflow. The main goal of this service is
to integrate and manage the execution of the metadata enrichments as an integrated
process. A (web based) graphical interface was implemented in order to allow the users to
perform the following actions:

. start the execution of the ingestion workflow,
o monitor the progress of the execution,

o verify the successful workflow execution,

. visualize error reports.

LM:ASSETS Ingestion Services — 2nd release Page 31 D2.1.3V13

assgts

act Ingestion Workflow /

1. Initialize Workflow
Execution

3. Knowledge Extraction slocps \I
| 4. Show Progress [Step |

Compeltion G-Cb)

i wloope i
- &. Show Progress ! Step :
1 Complefion
aflomes l c:h-c:bjl
_____________ 3
10. Error Report 7. Metadata Ingestion wloops §

Generation

| &. Show Pregress | Step |

I
1 Completion
g & o |

e

11: Finalize Workflow
Execution

Figure 7 Activity diagram for ingestion workflow management
Basic flow of events:

0. Start. The execution of the use-case begins when the user accessed a corresponding
screen in the graphical interface

1. Initialize Workflow Execution. The first step in the workflow will initialize the execution.
This step must resolve problems like: loading component configurations, localizing and
connecting to the local resources, etc. The ingestion workflow will process a bundle of

@000

IASSETS Ingestion Services — 2nd release Page 32 D2.1.3V13

assgts

objects grouped in a collection. This step will also allow users to upload their own metadata
collections and training sets to the server.

2. Harvest Binary Content. The second step in the execution workflow could optionally
invoke the service responsible for harvesting the binary files associated with the given
collection (only if a valid reference is available in item's metadata). The files which are not
available will be skipped; the broken links will be reported in service logs. If the file was
already downloaded in a previous execution, the harvesting will be skipped in order to
speed up the process and to avoid overload on the content provision server.

3. Knowledge Extraction. Invocation of the knowledge extraction service. See Knowledge
Extraction Service Requirements

4. Show Progress / Step Completion. The most of the services invoked by the ingestion
workflow are long lasting processes. Therefore, they will be started asynchronously and the
progress of the computations will be provided by request. Therefore the activities Nr. 4-6-8
will be implemented as loop activities, and will permanently indicate the progress of the
associated activity.

5. Metadata Classification. Invocation of the metadata classification service. See Metadata
Classification Service Requirements

6. Show Progress / Step Completion. See step 4.

7. Metadata Ingestion. The enriched metadata will be stored in the ASSETS/Europeana
(backend) database.

8. Show Progress / Step Completion. See step 4.

9. Exception Handler. The invocation of each activity from the ingestion workflow may fail
and throw an exception. The exception handler is responsible for extracting the user friendly
information from the caught exceptions and passing this information to the next processing
step.

10. Error Report generation. In the case that a workflow execution exception occurred, an
error report will be generated, stored in the system logs and shown to the user.

11. Finalize Workflow Execution. For either faulty or successful execution, the ingestion
workflow must terminate with releasing the locked resources and sending user notification.
Eventually, information about the execution of the ingestion workflow can be stored in the
database.

4.2 Service APIs

4.2.1 Knowledge extraction service
The Knowledge Extraction service exposes its functionalities through three interfaces.
Service Name | Knowledge Extraction

Responsibility = 1. Extraction of structured information from unstructured textual
metadata fields within Europeana metadata records

LM:ASSETS Ingestion Services — 2nd release Page 33 D2.1.3V13

assgts

Provided 1. KnowedgeExtractionTrainer,
lnieiiiareiss 2. KnowledgeExtractionManager,
3. KnowledgeExtractor

Dependencies | ASSETS common

The KnowledgeExtractionManager interface enables the management of the available
knowledge extraction model.

Interface KnowledgeExtractionManager
Name

Key Concepts = MetadataKnowledgeExtractionModel, KnowledgeExtractorDescriptor

Operations e listMetadatakKnowledgeExtractor: lists the knowledge extractor
models available for enrichment.

¢ deleteMetadatakKnowledgeExtractor: deletes a knowledge extractor
model.

e getKnowledgeExtractorDescriptor: returns a descriptor of the
knowledge extractor model detailing the type of extracted
information.

The KnowledgeExtractionTrainer interface enables the creation of new extraction models
based on a proper formatted training set. It also allows checking the status of a training
process.

Interface KnowledgeExtractionTrainer
Name

Key Concepts = MetadataKnowedgeExtractionTrainingSet,
MetadatakKnowledgeExtractionModel

Operations e trainMetadataKnowledgeExtractor: learns an extraction model with
the provided training data.

e getTrainingStatus: returns the status of a learning process.

The KnowledgeExtraction interface enables the use of a trained extraction model to enrich a
metadata record.

Interface KnowledgeExtractor
Name

Key Concepts = MetadataDataset, MetadatakKnoledgeExtractionModel

Operations e extractKknowledgeFromMetadata: enriches a metadata record using a
previously trained knowledge extraction model.

LM:ASSETS Ingestion Services — 2nd release Page 34 D2.1.3V13

assgts

Any training request is assigned with a unique identifier. The status of a training process is
described by an enumeration that lists four possible states of a training process (see Figure
8). The type of information extracted by an extraction model is described by a
KnowledgeExtractionDescriptor object (see Figure 8).

class domain

winterfacas wenumerations
MrowledgeExfractorDeserinfor krovd edge ExtractionTraining Status
+ namef) : Shimg
+ oreationOzte() : Date Zenums
. . . HOT_EXISTING
+ exbzeiionAieldtizse () o Stamgl) =
+ extracted Conceots(] | Shimg)] RIS
COMFPLETEL
ERROR

Figure 8 Knowledge Extraction Data Model

LM:ASSETS Ingestion Services — 2nd release Page 35 D2.1.3V13

assgts

class rest

BazedzsetzRest
Krnovdedge Extractor Rest

log: Logger= Logger.getlogge...
ingestionknowledgeEsxtractionSenice: KnowledgeExtractar
configuration: IngestionknowledgeExtractionConfiguration

+ o+ o+ + +

zetkinomledgeExtractonknomledgeExtractar) woid
setConfigurationflngestionkKnowledgeExtractionConfiguration’ : void
getConfiguration : IngestionkKnowledgeExtractionCanfiguration
getComponentdamer: String

displayComponentdame) : String

BazeAzmetsfest
Krovwd edge ExtractionTrainer Rest

log: Logger= Logger.getlogge...
ingestionknomledgeExtractionSenice: KnowledgeExtraction Trainer
configuration: IngestionKnowledgeExtractionCanfiguration

setkinowledgeEstractionTrainenkKnowledgeExtractionTrainear : woid
setConfiguration(lngestionknmmledgeExtractionConfiguration’ : woid
getConfiguration() : IngestionkKnowledgeExtractionConfiguration
getComponentMame) : String

displayComponentdame) : String

BameAzmetsfest
knowvdedge Extractionanager Rest

log: Logger= Logger.getlogge...
ingestionknowledgeBExtractionSenice: KnomledgeExtractionhanager
configuration: IngestionknowledgeExtractionConfiguration

+ o+ o+ + 4

setkinowledgeEsxtractionhanagenknomladgeExtractionhanager) : waid
setConfigurationfingestionkKnowmledgeExtractionCanfiguration) : waid
getConfigurationd) : IngestionknowledgeExtractionConfiguration
getComponentMamer) : String

displayComponentMame) : String

@000

Figure 9 Knowledge Extraction REST API

IASSETS Ingestion Services — 2nd release Page 36

D2.1.3V13

ass

class api

BazeAssetzSenice

knowdedge Extractiontanager impl

databanagement: Datablanagement
ingestionknowledgeExtractionlran: IngestionknowledgeBExtractionan
configuration: IngestionknowledgeExtractionConfiguration

+
+
+
+
+

+
+

wSenice Configurations

wknowledge Extraction Managements

zetDatablanagement’D atabdanagement) : void

setingestionknowledgeExdractionDaeingestionknowledgeExdractionlac) : void | KrowledgeExtraciionManager

getConfiguration(y : IngestionknowledgeExtractionConfiguration
zetConfiguration{ingestionknowledgeExtractionConfiguration) : wvoid

listhetadatakinomle dgeExdtracton]) : String[]
deletebetadatakinowled geExdractonString) : wvaid
getknomwledgeExdractorl escripton’String)) © KnowledgeExdractorbascriptor

EazeArzets Fenice

Knowdedge ExtractionTrainer Impl

databdanagement: Databdanagement
ingestionknomledgeExtractionlae: IngesionknonledgeExtractionlan
configuration: IngestionknomledgeExdractionConfiguration

+
+
+
+

akl

+
+

aSendce Configurationa

sethratablanagementiDatabanagement) : woid

setingestionknowledgeExtractionbaoIngestionknmuledgeExtractionao) : woid MnowledgeExiraciion Traimer

getConfiguration) : IngestionknomledgeExdractionCanfiguration
setConfiguration(ingestionknowledgeExtractionConfiguration) : waid

nowledge Extraction Managements
traintdetad atakinomle dgeExdracton IR : String
getTraining StatuaString) : KnowledgeExtraction TrainingStatus

BazedzmetsSenioe
Knowd edge Extractor Impl

databdanagement: DatabMlanagement
ingestionknonledgeExdractionan: IngestionkKnomledgeExdractionban
configuration: IngestionknomledgeE:xdractionConfiguration

wSenice Configurations

HrowledgeExfracior

+ szethatablanagementlatablanagement) : waid
+ zetingestionknowmledgeExdractionDaongestionknomledgeExdractionbaa) : vaid
+ getConfiguration : IngestionknonwledgeE=dractionConfiguration
+ zetConfigurationingestionknomwledgeExdractionConfiguration)) : woid
wkinowledge Extraction Managements
+ extractknomledgeFrombdetad ataidetadataRecord, String): MetadataRecord
Figure 10 Knowledge Extraction AP|
: IASSETS Ingestion Services — 2nd release Page 37 D2.1.3V13

assgts

4.2.2 Metadata classification service

The Metadata Classification service exposes its functionalities through three interfaces.
Service Name = Metadata Classification
Responsibility = 1. Classification of Europeana metadata records on relevant taxonomies
Provided 1. ClassificationTrainer,
Lichiees 2. ClassificationManager,

3. ClassificationService

Dependencies | ASSETS common

The ClassificationManager interface enables the management of the available knowledge
extraction model.

Interface ClassificationManager
Name

Key Concepts = MetadataClassificationModel
Operations e listMetadataClassifier: lists the available metadata classifier models.

¢ deleteMetadataClassifier: deletes a metadata classifier model.

The ClassificationTrainer interface enables the creation of new extraction models, based on
a proper training set, and the control of the status of a training process.

Interface ClassificationTrainer
Name

Key Concepts | MetadataClassificationTrainingSet, MetadataClassificationModel

Operations e trainMetadataClassifier: learns a metadata classifier model, using the
provided training data.

e getTrainingStatus: returns the status of a learning process.

The ClassificationService interface enables the use of a trained extraction model to classify a
metadata record under a taxonomy of interest.

Interface ClassificationService
Name

Key Concepts = MetadataDataset, MetadataClassificationModel

Operations e classifyMetadata: classifies a metadata record using a metadata
classifier model.

Any training request is assigned a unique identifier. The status of a training process is

LM:ASSETS Ingestion Services — 2nd release Page 38 D2.1.3V13

assgts

described by an enumeration that lists four possible states of a training process. The type of

taxonomy applied by a classification model is
MetadataClassificationDescriptor object.

described by a

class api

BazeAssetzlenioe

ClassificationManzager Impl

~ datamlanagement: Databanagement
~ ingestionMetadataClaszificationlrao: IngestionMetadataClassificationlan
configuration: IngestionhetadataClassificationConfiguration

wSemice Configurations

+ zethatablanagementDatabdanagement) : void

+ getConfiguration) : IngestionhdetadataClassificationConfiguration

+ setConfigurationfingestionhetadataClassificationConfiguration) : woid

«Registration Managements
+ szetlngestionhdetadataClassificationDaoilngestionhletadataClassificationD ac) : void

«hletadata Classifications
+ listhetadataClassifien]) : String]

+ deleteMetadataClazsifienString) : woid

BazedzsetsSenice

ClassificationServicelmpl

~ databdanagement: Datablanagement
~ ingestiontetadataClassificationCan: IngestiontetadataClassificationCrao
configuration: IngestionhetadataClassificationConfiguration

wSenrice Configurations

+ sethataddanagementatabdanagement) : woid

+ setingestionhietadataClaszsificationl aoflngestionhdetadataClassificationfand : woid
+ getConfiguration() : IngestionhetadataClassificationConfiguration

+ setConfigurationflngestionhetad ataClassificationConfiguration) : woid

achletadata Classifications
+ classifyhdetadatagString, MetadataRecard) : MetadataRecord

BazeAzzets Senice

ClazsificationTrainer Impl

~ datablanagement: Datamlanagement
~ ingestionMetadataClassificationDao: IngestionhetadataClaszificationDao
configuration: IngestionhetadataClassificationConfiguration

«Semice Configurations

+ szethatablanagement/latabianagement) : void

+ zetlngestionhdetadataClassificationDaollngestionhdetadataClassificationan) : void
+ getConfiguration) : IngestionhdetadataClassificationConfiguration

+ szetConfigurationflngestionhdetadataClassificationConfiguration? : void

whietadata Clazsification s
+ trainhietadataClassifienURI : String
+ getTrainingStatusString) : MetadataClassificationTrainingStatus

ClassiffcationManager

ClassificafionServioes

Classificafion Traimer

Figure 11 Metadata Classification Service API

@000

IASSETS Ingestion Services — 2nd release Page 39

D2.1.3V13

assgts

class rest

BazedzsetzRest

Cla=sificationTrainerRest

log: Logger= Logger.getlagge...

~ ingestionhdetad ataClaszificationSenrice: ClassificationTrainer
~ configuration: IngestionMetadataClassificationCanfiguration

+ o+ o+ o+ o+

setCl|assification TrainenClassificationTrainer) : vaid
setConfiguration(lngestionhetadataClassificationConfiguration) : vaid
getConfigurationy : IngestionMetadataClassificationConfiguration
getComponentdame) : String

dizplayComponentdame : String

BazeAzzetzRest

ClassificationServiceRest

log: Logger= Lagger.getlogge...

~ ingestionhetadataClassificationSendice: ClassificationSenvice
~ configuration: IngestiontetadataClazzificationConfiguration

+ + + + +

zetClassificationSenicelClassificationSenice) : woid
setConfigurationflngestionhietad ataClassificationConfiguration’ : woid
getConfiguration() : IngestionhetadataClassificationConfiguration
getComponenttdamer : String

displayComponentdame : String

BazeAzsetsRest

Cla=sificationManagerRest

lag: Logger= Logger.getlogge...

~ ingestionhietadataClassificationSernvice: Classificationhblanager
~ configuration: IngestionMetadataClassificationConfiguration

+ + + + +

setClassificationhanagenClassificationhanager) ; waid
setConfigurationingestionhdetad ataClazsificationConfiguration] : waid
getConfiguration? : IngestionhetadataClassificationCanfiguration
getComponentdamel : String

displayComponentName) @ String

@000

Figure 12 Metadata Classification REST API

IASSETS Ingestion Services — 2nd release Page 40

D2.1.3V13

assgts

4.2.3 Ingestion workflow management service

The ingestion workflow management service is implemented as a client-server application
which provides a rich graphical user interface for invocation of the enrichment services. It is
implemented as an extension of the Europeana ingestion control panel and it is
implemented using the Google web toolkit (gwt) technology. The details of the GUI
implementation are presented in the following tables and UML diagrams.

The following table presents a brief overview of the service and the most important
interfaces it uses:

Service Name | Ingestion workflow management — Frontend
Responsibility | Provides a GUI for performing the enrichment activities
Provided AssetsingestionControlPanel ,

lnieiiia s EnrichmentServiceProxy,

Dependencies | Europeana ingestion framework, knowledge extraction service, metadata
classification service

Assets control panel

The ASSETS ingestion control panel is the class responsible for the binding of the enrichment
screens into the ingestion application. The rendering of the enrichment screens (see Section
5.3) is handled by special classes which extends the GWT Widget class. The overview of the
AssetsIingestionPanel class is presented in the following table and the UML diagram
presenting the details of these classes is available in Figure 13:

Interface AssetsIingestionControlPanel extends EuropeanalngestionControlPanel
Name

Key Concepts | AssetsModelLearningWidget (model learning screen)
AssetsEnrichmentTestWidget (enrichment test screen)

AssetsCollectionKnowledgeExtractionWidget (knowledge extraction
screen)

AssetsCollectionClassificationWidget (metadata classification screen)

Operations ¢ onModuleLoad(): enhances the method in the parent class by adding
the initialization of the enrichment service

¢ addMenuEntries(): enhances the method in the parent class by
binding the enrichment screens in the main menu

Assets Enrichment Service Proxy

The enrichment service is in charge of executing the operations requested through the
control panel. It provides methods that handle the asynchronous communication between
the client (web browser) and the UIM server. The data transferred between client and
server is packaged as data transfer objects (DTOs). The enrichment service proxy is

LM:ASSETS Ingestion Services — 2nd release Page 41 D2.1.3V13

assgts

responsible for the invocation of the knowledge extraction and metadata classification

services and the

aggregation of the information displayed in the enrichment screens. The

EnrichmentServiceProxy interface is briefly documented in the following table and the full
class diagram with dependencies is presented in Figure 14:

Interface
Name

Key Concepts

Operations

EnrichmentServicelmpl implements EnrichmentServiceProxy

CollectionEnrichmentResultDTO: Object used to group together the
information displayed after running the enrichment processes on a
collection

CollectionObjectDTO: Object used to represent the enriched collection
object

CollectionObjectPreviewDTO: Object used to present a preview of a
collection object by displaying the most common information.

EnrichmentModelDTO: Object used to display the properties of the
enrichment models in the GUI

EnrichmentResultDTO: Container object used to keep references to the
input and the output of the (testing of the) enrichment process

EuropeanaCollectionDTO: Object used to represent the basic information
related to the metadata collections in the GUI

ModelLearningStatusDTO: Object used to display the status of the model
learning in the GUI

SearchCriteriaDTO: Object used for collecting the search filter used by
users to select the content.

e learnModel(): Method used for invoking the learning the enrichment
model from the provided training set

e getModellist(): Method used to retrieve the list of the available
enrichment models

¢ getColectionlList(): Method used for retrieving the list of collections
already ingested in Europeana application

e getCollectionObjects(): Method used to retrieve the preview of the
objects available in a collection with a given id.

e getModelStatus(): Checks the learning status for a model with a given
id.
¢ deleteModel(): Method used to invoke the deletion of enrichment

models

e performKnowledgeExtraction(): The method used for invoking the
knowledge extraction enrichment for the object identified by a given
URI

e getDataProviderList():The method used to retrieve the list of the data

LM:ASSETS Ingestion Services — 2nd release Page 42 D2.1.3V13

assgts

providers for given aggregator name

e searchObjects(): Method used to search for objects in Europeana
index by using a given search criteria

¢ performKnowledgeExtraction(fileName): Method used to invoke the
enrichment for all objects available in a given file

e getColectionFileList(): Method used to retrieve the list of the collection
files that are already uploaded on the server.

e performMetadataClassification(): Method used for performing the
metadata classification enrichment of all objects available in a given
collection

LM:ASSETS Ingestion Services — 2nd release Page 43 D2.1.3V13

assgts

prow s Tusmjoog Bun s Juhuswysuugspquucpsd

=j=Bping spuspke oesEn (lesepyeBppnaunjunyiaE

Buigs ; Qadiijapoppet

proa - (R BRI BUs JIUsW pRIL I 3] E R0

1=2Bpipn : apuigaisas

pion 1 (=aBmanssosgisnouisylamenu|ugouliss

nugm(sxﬁmma_ﬁmmacm.& yauuIhaBppauonosnxgsbpamocuruoosonsIassy

[RUBHIEIME U QIURMLLL T U oGaEES

Bpipuogorgx3afpapmouyuoG a0 5SS UBLIYILIUS

pon s fusmoeg ‘Busg Juhuswysuugsgjuscpad
<}=BpAN SPUBEGE c=EsED Oesamiebpnnawnunygist
Buws adijapoppat

o aBpniBus JIUsuiyou U 3RS

1=Bpyn - (uepurgsieaic

(oufisgfxnig Jusuysuu =ty WSS BT U005 eSS

UGG CUCHNESREgoMmoUs ~

XOORS] XOOQS]UMESS ~

uepng uepngEREigoUMESs o~

XOogElT XogispauNEes ~

SRS SIIEG Oy F RO Lo gabug uonomsgiosigo ~
“LOMenBIgRRigoUoAsIeD-AELIISD (s LEResge ~

sebegmduns uibegimpesige ~

O AR R SR GO OIS DD BRI S BIEOIS] JBpIEJEIEIE oS00 ~
AOQIET] IXCOQIETEPOW. ~

OIS PONIUSUIYIUUT =] I Rpol ~

[BUE JIETUE, oRpxgeBpamouy o~

ueyng uoynEESgoUoLUE

SLAS QI BB SIURLINLT (B0 SIURIYSIUS . -
(IROEL XS] MBU = HOELXS HOEUNSSUIUSLLIILE ~
[BUBJ|ENIa), (RUEJINSSYIUSLSIEE ~

=
n
o
&
2

JBUBHIEIQIE JBUE HIUBLLOLLTUCHORD

19BpIMUOn EIIIS SRIDUORI B0 SFES S RUBWYILIUS

UBHNE UGHNEE4REodn
pecidn=Ed Xogsfdpecidn
{Ruppes] 153138, = Bullg “103138

pow
<O LIBPOWILBWLRLLT =S JEIspoU
[BUB QUG jRUSIndu

SUASYAXOE Y BRASSIUBLILIULT (SOUUBSIUSW YouLs
[BUBJIENE), JRUBJYNEsUIUSULIUUS

(HOBL¥Sd MU = HOSL XSS HIE YN UoIIEIHIILSW UM
UBHRg LOPNSUSIaRIcT RuLS

UCPe=l (51355, = BUlS HCLTDouDoy vivd
xogyeeyn xogsBojjuswipouug e

XOgIST XOgiS] SE4ucqaseD

e R e e

[FiuopESl X805T, = BUAS HEAIN, X0od

IBLUILIUR

15U S oL

JUASHRNUASENN0SEY (FHAUSSEUNCSA)
sulsyanwessiiopsoday eovusgiliopsoda
olsyixosgasnssuonsibaiy sovuasuonsiBagu
SUATYSIUS SUONoENT [SNASSUONDENS

Bueqopuonuogsabu jeueadoung:juana
oAU
[BUEIGUODUaESEUIIENs gy

,.zmmm_._;. XOgIE] XOGISESPMCIJBIER ~
¥ <Huns s JRUspRLIdEER -
i .mm.m\zlud UOPE= .S1355 V. = DS 'HOLYDIUDDY vivd +
HOgiE] MegEuogaRios ~
«OlguogasfossuEsdang s Jsiuogosjos <~
pion : (JpsoTEnpopue. + THUOPEa} 000Z, = BUNS ‘HIQW w09 +
PIOA (NUBPUS I3 SIEUUINURNPRE #
.mn.nmlwmlzll 1aBpipasagy YOI 5335 S UL D UIU S
SudspircidRiiiagiusuTuLT EUEgluBLyouLE - 158 muogEsSuy
j3uE gjoguoquons abujsias sy:usyg
o
mwm_._.z pEoidragy ep4buuien
Ty, LERNG LCRREIS RPN YSagR:
= *0g15i xogsdi LuEpow
|2OET §S0ETRUENSPOW
<OLOIFPCRLSLLSUUT - HaE IS0 (SAs LS 1IRpow
2Begmduns seBEgimyEpow
= DAQISPoINIUSMYRLU TSR A BSOS R P 4B B ISP oW
[BUBdIENUE), JRuEd BulEsERow
peos - {)pEcnpopue. + HogpeEL e plSpow
peoe : (ISacimis gaa . BANMAL S U duDe SR ow
uonemucisnouopsabup : Jsoweuimst & usnng CUcHngiEpopiuEs]
prion s {NUSPPBGIPS)SaLIUINUSNPRE & iBgET j=gETsmEsh

[BUEUICY jEuEndu

Huppes] SuloglxoidSousgiuswiioeus SRS SILRULDULS

SOOI poplUBLLDEL S SEpopucIsRa S RluS I UoHIBE SR PO LRLDILS
UoUnNg CUCHNEEpGKMEER

bopng LopnguUoLESD

UCRNG UCRNgEMNESHISUD

Jafpipabuniie 3| apoy s}as sy ULy ILIUS.
1ebpuy Uy sbu;

s1abipig pue[aued J0e

D2.1.3V13

Page 44

IASSETS Ingestion Services — 2nd release

@000

assgts

Figure 13 Assets Ingestion Panel API

Tuopss] Buny —gQussioGuss -
Bums psjiembuc: ~

Bugg pnspqfoquswytuse ~
Buuls pnspdpsiouua <

OIS IIUBIYDLUFUORI 30T paIRYS

siqEzfEn=S

Buuls cswsu
Bue pe

Buuls Sussp 3]
Buwgs uoqducsap

Olguonaajoleu N!uﬂL-._m“..ﬂ_mcﬂﬁm
SgEzfEusS

Buuls suenNRpol

B pEpoU

Buns | ucndugsagiepow
Buws smyepgBunues;
Bugg =lessappous

OlLOsmEgBuLEaTj3popaEys
HQEZELSSE]

Buns tuEy ~
Bung sdipjepow -
WP o~

Buns vogdusssp. -
;}E IHEOUOGEDT ~

DLOIPOMIUALY DU T IR 3IBYS
BIqEZIEUSSE]

T
- I
1

.
2
; W

SOUOMBA S IRoUNERIen =8 T © (Ol asIsMaysEagsafgoyuess
CdapnssgUsiiBuuI usosgan | (Uesoog Bung JuluanesiEsen e EnE SpuIaLad
NS SLIUS AU LT Uonaar0n T (Uesisog Bus U Uono e s Sp Mo UMILIaL o0
Ol gynssgusyssny © (u - Bunc) uogssnxgsbpamouyiousd

CUgenEISENWES P00 - (Buqg Buas BlLsEpowesy

cuasniesBuuies yspoyy - (ju Bunglemeigispopyist

<O AIFPORUSWYIUUTET © (BURS s Tsnomsb

=hug ey - (Buighepepanigeiegist

2O aMEA IR ElRo Kohearan =R | (BusTlsiealgn uoyasion 58

= aguUogreronBuEStung=1ET] | (iErjuonosionish

<Bugs =i ; (iErjar4uonasion)sh

pran = qu Bunghspogysrsian

F R S

+

Ax0ld501/8 SIUS WYL S JUsWanua
A BIEQE] Y

BOULIBG SIOLLISY

Wugpsal MO OV¥CTdN. = BUElE M0 av07dn 4539 +
4, = Buns 34 AL 311 3NV Wivdwd +
JUCEE R PR LIS E0D, = NOLEDYHIXT O3HDIHNT 3dAl U4 + tope=Bos moseseies
{Egpeas Epusiosios, = BURS NOIVIHISSY 1D O3HIMENT 3dAL 3114 + : B e e
IUDRE=l o Loaoa, = BUNS NOILO31100 344l T3 + Aw_._.bm.vumm._ ”mnmw_._.ﬁ»m.m.m e
Uiugpead peadnegsi=sss, = Blas (0¥01dl 3113 NCOILDY + Bl i
SUESUOIUBLUIYT LU Sjas Sy PaIEy S i
EITEPBUL OlOENSINYIIESS IpalBYS
SO [[BpapIUSwyau L g SfJEELES:
e ,__? - 7
RS I -
® - 1 £
===n ” sasn L-gasn
e | T
i ! i
swsieuepyEieg dsBEuEpEIEpEIRW
sopergelpapaouy cpengsBpemeiy olgsslaguegoanes osigoiswbuo
13e vonoex T 2Bp Moy B UoaEax SRS oLy olopsigoutisates Jesigopaysuue
saBeuspuoysepgsipamolny JsBeuspuchoenxg sBpapouy
IUCRER PlEdsiEesy Mal = 0 S sDE LB Sid5)essy Jo0 Sl e LaU By =g [OLENSSHIUBLRIII T PAIRYS
Mugpeal nowinSiessy M3U = UNEINDYUCTRLE |0 UCDINCUEN SIessy (ByLoa | srgeayEuag
JBUSI] USHEXESSED JRLIR | UOUSHISI G0
e — — — SRMBCUDISIISSED (OB SUNERISSED
Sl reEeuspyUuogEassErn ualsunyuoqEaEEER o paUsILE
iugpeal 0 =10 3215 HoMNNE + -
(L ED I AS IR LY DU T U S U S
P Bur EEIUR SR
M e jepusgbE g SaASSIUSWUULT 2 Emﬂm.Wm...n ik
s == Bums duasaquny

Bus dojeso

0LmaRlgouoRas|oD paIEys
BiqezyEUSE

Bugg . -
Buns Ucpdusssgpcus -
fung unsussdoing -

loLgmaiaaigasigouonoao)cpateys
SGEfELIT

510 A0IMaE 128

Figure 14 Enrichment Service API

D2.1.3V13

Page 45

IASSETS Ingestion Services — 2nd release

@000

assgts

4.3 Software Packaging

The ingestion services are 100% java code, and are developed using Eclipse IDE and Maven
built management.

The metadata classification service depends on:

e Jatecs-1.1, for indexing, transformation in vectorial form, learning algorithms, and
application of learned model to metadata records.

e Trove-2.1, for the efficient data structures used to store models and vectors.
The knowledge extraction service depends on:

e Stanford-corenlp-11.6.19, for POS tagging, and lemmatization.
The ingestion workflow management web application depends on:

¢ Ingestion-knowledgeextraction-client, lightweight library used for the remote
invocation of knowledge extraction service

* Ingestion-metadataclassification-client, lightweight library used for the remote
invocation of metadata classification service

e (ASSETS) Comon-client, lightweight library used for the remote invocation of
common functionality of the ASSETS platform. It is used to retrieve the collections
and the metadata available on remote ASSETS servers.

e Europeana-uim-gui-controlpanel, the web application implementing the standard
functionality of the Europeana ingestion process.

The built process of all the ASSETS components is managed by Hudson, which automatically
builds all components every night. The following artefacts are created for the ingestion
services:

* ingestion-knowledgeextraction-0.0.1-SNAPSHOT.war, the web application which
implements the server side processing of the knowledge extraction service. The
service interface is exposed as web services through the REST interface.

e ingestion-metadataclassification-0.0.1-SNAPSHOT.war, the web application which
implements the server side processing of the metadata classification service. The
service interface is exposed as web services through the REST interface.

* ingestion-knowledgeextraction-client-0.0.1-SNAPSHOT.jar, the lightweight library
providing the JAVA API for remote invocation of the knowledge extraction service.

e ingestion-metadataclassification-client-0.0.1-SNAPSHOT.jar, the lightweight library
providing the JAVA API for remote invocation of the metadata classification service.

e assets-uim-gui-controlpanel-0.0.1-SNAPSHOT.war, the web application
implementing the GUI used for the execution of ingestion and enrichment
processes.

LM:ASSETS Ingestion Services — 2nd release Page 46 D2.1.3V13

assgts

4.4 Installation and configuration

Both enrichment services require to be provided the path in the file system where the
learned models will be temporarily stored. The XML files containing batches of metadata
records given as input through the training sets are also saved locally. The enriched XML
files produced as output are stored permanently in the subfolders of the same path.

For the metadata classification service the properties are set in the file assets-ingestion-
metadataclassification.properties :

path_to_models = ./services/ingestion-metadataclassification/data
path_to_batches = ./services/ingestion-metadataclassification/batches

For the knowledge extraction service the properties are set in the file assets-ingestion-
knowledgeextraction.properties:

path_to_models = ./services/ingestion-knowledgeextraction/data
path_to_batches = ./services/ingestion-knowledgeextraction/batches

The ingestion workflow management application uses the
AssetsIngestionControlPanel.gwt.xml and assets-uim-gui-controlpanel.properties
configuration files which are available under project resources. The xml file is used for
configuring the GWT engine by defining the AssetsingestionControlPanel module. The
information in this file is static and it is used for deploying the GWT application on the
server. On the contrary, the .properties file contains information which is specific to each
individual server:

#folder to upload the training sets for know edge extraction
know edge. extracti on. nodel s. fol der = /assets/enrichnent

folder to upload collections for performng the know edge
extraction tasks (take care for whitespaces at the end of
properties)

know edge. extraction. col |l ections.original.folder =

./ collections/original

know edge. extraction. col | ections. ori gi nal . baseurl =
http://127.0.0. 1: 8888/ col | ections/ori gi nal

folder to upload collections for performng the know edge
extraction tasks (take care for whitespaces at the end of
properties)

know edge. extraction. col | ections. enriched. fol der =
./collections/extraction

know edge. extraction. col | ecti ons. enri ched. baseur!| =
http://127.0.0. 1: 8888/ col | ecti ons/ extraction

#folder to upload the training sets for know edge extraction (take
care for whitespaces at the end of properties)
classification.model s.folder = /assets/enrichnent

folder to upload collections for perform ng the netadata
classification tasks (take care for whitespaces at the end of
properties)

classification.collections.original.folder = ./collections/original

LM:ASSETS Ingestion Services — 2nd release Page 47 D2.1.3V13

assgts

classification.collections.original.baseurl =
http://127.0.0. 1: 8888/ col | ections/origina

folder to upload collections for performng the know edge
extraction tasks (take care for whitespaces at the end of

properties)

classification.collections.enriched.fol der =
./collections/classification

classification.collections.enriched. baseurl =
http://127.0.0.1: 8888/ col |l ections/classification

LM:ASSETS Ingestion Services — 2nd release Page 48 D2.1.3V13

assgts

5. User Manual

This section gives the final user some guidelines to follow in order to define the set of
metadata records to be included into the training set, so to ensure an accurate model will
be generated by the learning processes. It also describes the XML data format for the
specification of training sets for the knowledge extraction and metadata classification
services.

5.1 Knowledge extraction service

5.1.1 Training set definition guidelines

A training set is composed of a single file that specifies both the set of concepts to be
extracted and some annotated training examples where the concept to be extracted is
present.

For example, if the set of relevant concepts includes ‘Name of person’, there must be
examples where it is possible to locate the name of a specific concept, e.g., “Thomas Edison
invented the filament lamp in America.”

Typical relevant concepts are those of Person (e.g., “Thomas Edison”, “Barack Obama”),
Organisation (e.g., “ONU”, “United States of America”, “USA”), Location (e.g., “Alps”,
“Paris”). A relevant concept could be also a specialization of a general one (e.g., Music
composer, Non-governmental organisation, Address) or be domain-specific (e.g., Painting
technique, Music style, Tool).

The mentions of entities that are instances of such concepts (e.g., “Oil painting of a view of
the Arno river”, “Recording of the rock concert held in London in 1982”, “Wooden sculpture
of a head, sculpted with a carving fish tail”) are identified in text and annotated accordingly.

In order to prepare the training set for the Knowledge Extraction service the users should
perform the following steps:

1. identify a set of concepts that are relevant for their activities and for which they can
provide a critical mass of training examples;

2. identify a set of metadata records to be submitted as training examples. Such
metadata records should be representative cases in which a relevant concept (e.g.,
a person's name) occurs in an unstructured textual field (e.g., in the <description>
field);

3. locate the concepts in the textual fields of the examples and verify whether or not it
will be necessary to indicate also the exact position of the concept in the text. If the
position is not specified, then any instance of the annotated concept in the text is
considered as an occurrence of that concept. For example, in "Paris Hilton went to
Paris" the annotation of the location "Paris" must specify the position in text?,
otherwise the name of Paris Hilton will also be considered as an occurrence of the
location (if Paris Hilton is marked as a person, then the word Paris in Paris Hilton is

2 The various methods to indicate the position will be presented in next section, when discussing an example of a training set.

LM:ASSETS Ingestion Services — 2nd release Page 49 D2.1.3V13

assgts

considered to have two annotations of different types);

4. specify each occurrence of the concept by explicitly specifying the field where the
concept occurs and, if needed, its position.

With respect to the number of metadata records to be inserted into the training set, the
basic guideline is that the more examples the learning algorithm gets in input, the more
probably the learned automatic extractor will be accurate and able to recognize instances of
concepts never seen before.

A second guideline is that each concept in the set of relevant concepts should get a relevant
number of examples (an indicative number is 1,000 examples per concept). It is not relevant
for each metadata record in the training set to contain examples for each possible concept.

5.1.2 Training data format

The training sets created according to the previous guidelines must respect the syntax
specified in the XSD schema file extractionSchema.xsd that defines the XML elements
describing a training set. The extractionSchema.xsd file is part of the ASSETS software
repository, and it is also fully included in Appendix A. Now we discuss in detail an example of
a training set. We will show the steps that a user needs to perform in order to extract
knowledge and, in particular, the name of a person from the following metadata record:

<europeanaRecord>
<title>Lamp</title>
<description>
Thomas Edison invented the filament lamp in America at almost the
same time as Joseph Swan did in England. He produced this type of lamp
in 1880. This particular bulb comes from Pullar’s Dye Works in Perth, one
of the first buildings in Australia to install Edison lights.
</description>
<source>Tyne and Wear Imagine</source>
<provider>CultureGrid ; Uk</provider>
<identifier>http://www.imagine.org.uk/details/index.php 2id=TWCMS:B5141a</i
dentifier>
<subject> inventors and innovators; people</subject>
<type>Image</type>
</europeanaRecord>

We are interested in extracting the names of persons (Thomas Edison, Joseph Swan), the
names of places (America, Australia), and the names of organization (Pullar's Dye Works).

The training set starts with the following lines:

<?xml version="1.0" encoding="UTF-8"?>

<extractionTrainingSet xmins="http.//www.example.org"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http.//www.example.org/ExtractionSchema.xsd ">

The first line declares the XML version used in the file; the second line refers to the XML
Schema that defines the syntax for the document, with a reference to the site
http://www.example.org, which is only a dummy name that will be replaced with the real
URL of the xsd file once the service is deployed.

LM:ASSETS Ingestion Services — 2nd release Page 50 D2.1.3V13

assgts

After the short preamble, the extraction task is defined (XML comments are given inline to
better clarify each element purpose):

<extractionTask>
<I-- This is the name of the field of the records from which information has to be
extracted -->
<sourceFieldName>description</sourceFieldName>
<conceptSet>
<!I-- This is a descriptive name for the extraction task -->
<name>NER for persons, organizations and locations</name>
<I-- Optional pointer to a resource that describes the concept set -->
<URI>http://en.wikipedia.org/wiki/Named_entity_recognition</URI>
<concepts>
<concept>
<I-- Name of the concept to be extracted -->
<name>person</name>
<I-- Optional pointer to a resource describing the concept -->
<URI>http://en.wikipedia.org/wiki/Person</URI>
<I-- Optional name of the target field in the record that has to be filled with
extracted information -->
<targetField>extractedPerson</targetField>
</concept>
<concept>
<name>organization</name>
<URI>http://en.wikipedia.org/wiki/Organization</URI>
<targetField>extractedOrganization</targetField>
</concept>
<concept>
<name>location</name>
<URI>http://en.wikipedia.org/wiki/Place_(geography)</URI>
<targetField>extractedLocation</targetField>
</concept>
</concepts>
</conceptSet>
</extractionTask>

The sourceFieldName element describes the unstructured textual field of the metadata
record from which information has to be extracted, “description” in this case.

In this example the set of concepts refer to a Named Entity Recognition (NER) task for
persons, organization, and location. After naming the task, the set of concepts is specified:
for each concept (described by a concept element), the user can optionally provide an URI
describing in detail the aim of the task, and the target field of the output XML file where the
extracted information will be stored (targetField).

It is relevant to note that in the current implementation the optional targetField
information, if specified, is not used by the service, which instead stores the automatically
extracted information in a custom JSON-formatted element, the dcterms:references
element of the ESE format (which was found to be the appropriate field for storing this type
of information). This custom solution is due to the limited possibility of expansion of the ESE

LM:ASSETS Ingestion Services — 2nd release Page 51 D2.1.3V13

assgts

format. However the targetField field has been left in the training data format in order to
support its future use with the EDM format.

Once the concept set has been defined, the user must provide the automatic information
extractor with a set of examples in order to train it properly.

All the examples are listed within an examples element, and each example is composed by
two parts, the metadata record and the list of extracted concepts (stand-off annotation):

<examples>
<example>
<record>
<europeanaRecord>
<title>Lamp</title>
<description>Thomas Edison invented the filament lamp in America at almost the
same time as Joseph Swan did in England. He produced this type of lamp in 1880. This
particular bulb comes from Pullar's Dye Works in Perth, one of the first buildings in
Australia to install Edison lights.</description>
<source>Tyne and Wear Imagine</source>
<provider>CultureGrid ; Uk</provider>

<identifier>http://www.imagine.org.uk/details/index.php ?id=TWCMS:B5141a</identifi
er>
<subject> inventors and innovators; people</subject>
<type>Image</type>
</europeanaRecord>
</record>
<extractedConcept>
<name>person</name>
<extractedText>Thomas Edison</extractedText>
<I-- A position specification is required when multiple instances of the extracted text
appear in the field with different role. In this case no position is required.-->
<l--In case a position is necessary, it can be expressed by copying the extracted text
with enough surrounding text in order to make it uniquely identifiable. See examples in
following concept extractions.-->
<URI>http://viaf.org/viaf/66552944/#Edison, Thomas A. (Thomas Alva), 1847-
1931</URI>
</extractedConcept>
<extractedConcept>
<name>location</name>
<extractedText>America</extractedText>
<!I-- Also for this case the position is not required. It is just reported as an example. --

<position>
<context>lamp in America at almost</context>
</position>
<URI>http://www.geonames.org/maps/google_39.76_-98.5.htmi</URI>
</extractedConcept>
<extractedConcept>
<name>person</name>

LM:ASSETS Ingestion Services — 2nd release Page 52 D2.1.3V13

assgts

<extractedText>Joseph Swan</extractedText>
<I-- Position can also be expressed as the offset in number of characters from the
beginning of the text in the field. -->
<position>
<startCharacterPosition>80</startCharacterPosition>
<endCharacterPosition>91</endCharacterPosition>
</position>
<URI>http://viaf.org/viaf/15100261/#Swan, Joseph Wilson, 1828-1914</URI>
</extractedConcept>
<extractedConcept>
<name>location</name>
<extractedText>England</extractedText>
<URI>http://www.geonames.org/2635167/united-kingdom-